Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  quscrng Structured version   Visualization version   GIF version

Theorem quscrng 19061
 Description: The quotient of a commutative ring by an ideal is a commutative ring. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypotheses
Ref Expression
quscrng.u 𝑈 = (𝑅 /s (𝑅 ~QG 𝑆))
quscrng.i 𝐼 = (LIdeal‘𝑅)
Assertion
Ref Expression
quscrng ((𝑅 ∈ CRing ∧ 𝑆𝐼) → 𝑈 ∈ CRing)

Proof of Theorem quscrng
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑢 𝑣 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 crngring 18381 . . . 4 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
21adantr 480 . . 3 ((𝑅 ∈ CRing ∧ 𝑆𝐼) → 𝑅 ∈ Ring)
3 simpr 476 . . . 4 ((𝑅 ∈ CRing ∧ 𝑆𝐼) → 𝑆𝐼)
4 quscrng.i . . . . . 6 𝐼 = (LIdeal‘𝑅)
54crng2idl 19060 . . . . 5 (𝑅 ∈ CRing → 𝐼 = (2Ideal‘𝑅))
65adantr 480 . . . 4 ((𝑅 ∈ CRing ∧ 𝑆𝐼) → 𝐼 = (2Ideal‘𝑅))
73, 6eleqtrd 2690 . . 3 ((𝑅 ∈ CRing ∧ 𝑆𝐼) → 𝑆 ∈ (2Ideal‘𝑅))
8 quscrng.u . . . 4 𝑈 = (𝑅 /s (𝑅 ~QG 𝑆))
9 eqid 2610 . . . 4 (2Ideal‘𝑅) = (2Ideal‘𝑅)
108, 9qusring 19057 . . 3 ((𝑅 ∈ Ring ∧ 𝑆 ∈ (2Ideal‘𝑅)) → 𝑈 ∈ Ring)
112, 7, 10syl2anc 691 . 2 ((𝑅 ∈ CRing ∧ 𝑆𝐼) → 𝑈 ∈ Ring)
128a1i 11 . . . . . . 7 ((𝑅 ∈ CRing ∧ 𝑆𝐼) → 𝑈 = (𝑅 /s (𝑅 ~QG 𝑆)))
13 eqidd 2611 . . . . . . 7 ((𝑅 ∈ CRing ∧ 𝑆𝐼) → (Base‘𝑅) = (Base‘𝑅))
14 ovex 6577 . . . . . . . 8 (𝑅 ~QG 𝑆) ∈ V
1514a1i 11 . . . . . . 7 ((𝑅 ∈ CRing ∧ 𝑆𝐼) → (𝑅 ~QG 𝑆) ∈ V)
1612, 13, 15, 2qusbas 16028 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑆𝐼) → ((Base‘𝑅) / (𝑅 ~QG 𝑆)) = (Base‘𝑈))
1716eleq2d 2673 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑆𝐼) → (𝑥 ∈ ((Base‘𝑅) / (𝑅 ~QG 𝑆)) ↔ 𝑥 ∈ (Base‘𝑈)))
1816eleq2d 2673 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑆𝐼) → (𝑦 ∈ ((Base‘𝑅) / (𝑅 ~QG 𝑆)) ↔ 𝑦 ∈ (Base‘𝑈)))
1917, 18anbi12d 743 . . . 4 ((𝑅 ∈ CRing ∧ 𝑆𝐼) → ((𝑥 ∈ ((Base‘𝑅) / (𝑅 ~QG 𝑆)) ∧ 𝑦 ∈ ((Base‘𝑅) / (𝑅 ~QG 𝑆))) ↔ (𝑥 ∈ (Base‘𝑈) ∧ 𝑦 ∈ (Base‘𝑈))))
20 eqid 2610 . . . . . 6 ((Base‘𝑅) / (𝑅 ~QG 𝑆)) = ((Base‘𝑅) / (𝑅 ~QG 𝑆))
21 oveq2 6557 . . . . . . 7 ([𝑢](𝑅 ~QG 𝑆) = 𝑦 → (𝑥(.r𝑈)[𝑢](𝑅 ~QG 𝑆)) = (𝑥(.r𝑈)𝑦))
22 oveq1 6556 . . . . . . 7 ([𝑢](𝑅 ~QG 𝑆) = 𝑦 → ([𝑢](𝑅 ~QG 𝑆)(.r𝑈)𝑥) = (𝑦(.r𝑈)𝑥))
2321, 22eqeq12d 2625 . . . . . 6 ([𝑢](𝑅 ~QG 𝑆) = 𝑦 → ((𝑥(.r𝑈)[𝑢](𝑅 ~QG 𝑆)) = ([𝑢](𝑅 ~QG 𝑆)(.r𝑈)𝑥) ↔ (𝑥(.r𝑈)𝑦) = (𝑦(.r𝑈)𝑥)))
24 oveq1 6556 . . . . . . . . 9 ([𝑣](𝑅 ~QG 𝑆) = 𝑥 → ([𝑣](𝑅 ~QG 𝑆)(.r𝑈)[𝑢](𝑅 ~QG 𝑆)) = (𝑥(.r𝑈)[𝑢](𝑅 ~QG 𝑆)))
25 oveq2 6557 . . . . . . . . 9 ([𝑣](𝑅 ~QG 𝑆) = 𝑥 → ([𝑢](𝑅 ~QG 𝑆)(.r𝑈)[𝑣](𝑅 ~QG 𝑆)) = ([𝑢](𝑅 ~QG 𝑆)(.r𝑈)𝑥))
2624, 25eqeq12d 2625 . . . . . . . 8 ([𝑣](𝑅 ~QG 𝑆) = 𝑥 → (([𝑣](𝑅 ~QG 𝑆)(.r𝑈)[𝑢](𝑅 ~QG 𝑆)) = ([𝑢](𝑅 ~QG 𝑆)(.r𝑈)[𝑣](𝑅 ~QG 𝑆)) ↔ (𝑥(.r𝑈)[𝑢](𝑅 ~QG 𝑆)) = ([𝑢](𝑅 ~QG 𝑆)(.r𝑈)𝑥)))
27 eqid 2610 . . . . . . . . . . . . 13 (Base‘𝑅) = (Base‘𝑅)
28 eqid 2610 . . . . . . . . . . . . 13 (.r𝑅) = (.r𝑅)
2927, 28crngcom 18385 . . . . . . . . . . . 12 ((𝑅 ∈ CRing ∧ 𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ (Base‘𝑅)) → (𝑢(.r𝑅)𝑣) = (𝑣(.r𝑅)𝑢))
30293adant1r 1311 . . . . . . . . . . 11 (((𝑅 ∈ CRing ∧ 𝑆𝐼) ∧ 𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ (Base‘𝑅)) → (𝑢(.r𝑅)𝑣) = (𝑣(.r𝑅)𝑢))
31303expa 1257 . . . . . . . . . 10 ((((𝑅 ∈ CRing ∧ 𝑆𝐼) ∧ 𝑢 ∈ (Base‘𝑅)) ∧ 𝑣 ∈ (Base‘𝑅)) → (𝑢(.r𝑅)𝑣) = (𝑣(.r𝑅)𝑢))
3231eceq1d 7670 . . . . . . . . 9 ((((𝑅 ∈ CRing ∧ 𝑆𝐼) ∧ 𝑢 ∈ (Base‘𝑅)) ∧ 𝑣 ∈ (Base‘𝑅)) → [(𝑢(.r𝑅)𝑣)](𝑅 ~QG 𝑆) = [(𝑣(.r𝑅)𝑢)](𝑅 ~QG 𝑆))
334lidlsubg 19036 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → 𝑆 ∈ (SubGrp‘𝑅))
341, 33sylan 487 . . . . . . . . . . . 12 ((𝑅 ∈ CRing ∧ 𝑆𝐼) → 𝑆 ∈ (SubGrp‘𝑅))
35 eqid 2610 . . . . . . . . . . . . 13 (𝑅 ~QG 𝑆) = (𝑅 ~QG 𝑆)
3627, 35eqger 17467 . . . . . . . . . . . 12 (𝑆 ∈ (SubGrp‘𝑅) → (𝑅 ~QG 𝑆) Er (Base‘𝑅))
3734, 36syl 17 . . . . . . . . . . 11 ((𝑅 ∈ CRing ∧ 𝑆𝐼) → (𝑅 ~QG 𝑆) Er (Base‘𝑅))
3827, 35, 9, 282idlcpbl 19055 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝑆 ∈ (2Ideal‘𝑅)) → ((𝑎(𝑅 ~QG 𝑆)𝑐𝑏(𝑅 ~QG 𝑆)𝑑) → (𝑎(.r𝑅)𝑏)(𝑅 ~QG 𝑆)(𝑐(.r𝑅)𝑑)))
392, 7, 38syl2anc 691 . . . . . . . . . . 11 ((𝑅 ∈ CRing ∧ 𝑆𝐼) → ((𝑎(𝑅 ~QG 𝑆)𝑐𝑏(𝑅 ~QG 𝑆)𝑑) → (𝑎(.r𝑅)𝑏)(𝑅 ~QG 𝑆)(𝑐(.r𝑅)𝑑)))
4027, 28ringcl 18384 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝑐 ∈ (Base‘𝑅) ∧ 𝑑 ∈ (Base‘𝑅)) → (𝑐(.r𝑅)𝑑) ∈ (Base‘𝑅))
41403expb 1258 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ (𝑐 ∈ (Base‘𝑅) ∧ 𝑑 ∈ (Base‘𝑅))) → (𝑐(.r𝑅)𝑑) ∈ (Base‘𝑅))
422, 41sylan 487 . . . . . . . . . . 11 (((𝑅 ∈ CRing ∧ 𝑆𝐼) ∧ (𝑐 ∈ (Base‘𝑅) ∧ 𝑑 ∈ (Base‘𝑅))) → (𝑐(.r𝑅)𝑑) ∈ (Base‘𝑅))
43 eqid 2610 . . . . . . . . . . 11 (.r𝑈) = (.r𝑈)
4412, 13, 37, 2, 39, 42, 28, 43qusmulval 16038 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ 𝑆𝐼) ∧ 𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ (Base‘𝑅)) → ([𝑢](𝑅 ~QG 𝑆)(.r𝑈)[𝑣](𝑅 ~QG 𝑆)) = [(𝑢(.r𝑅)𝑣)](𝑅 ~QG 𝑆))
45443expa 1257 . . . . . . . . 9 ((((𝑅 ∈ CRing ∧ 𝑆𝐼) ∧ 𝑢 ∈ (Base‘𝑅)) ∧ 𝑣 ∈ (Base‘𝑅)) → ([𝑢](𝑅 ~QG 𝑆)(.r𝑈)[𝑣](𝑅 ~QG 𝑆)) = [(𝑢(.r𝑅)𝑣)](𝑅 ~QG 𝑆))
4612, 13, 37, 2, 39, 42, 28, 43qusmulval 16038 . . . . . . . . . . 11 (((𝑅 ∈ CRing ∧ 𝑆𝐼) ∧ 𝑣 ∈ (Base‘𝑅) ∧ 𝑢 ∈ (Base‘𝑅)) → ([𝑣](𝑅 ~QG 𝑆)(.r𝑈)[𝑢](𝑅 ~QG 𝑆)) = [(𝑣(.r𝑅)𝑢)](𝑅 ~QG 𝑆))
47463expa 1257 . . . . . . . . . 10 ((((𝑅 ∈ CRing ∧ 𝑆𝐼) ∧ 𝑣 ∈ (Base‘𝑅)) ∧ 𝑢 ∈ (Base‘𝑅)) → ([𝑣](𝑅 ~QG 𝑆)(.r𝑈)[𝑢](𝑅 ~QG 𝑆)) = [(𝑣(.r𝑅)𝑢)](𝑅 ~QG 𝑆))
4847an32s 842 . . . . . . . . 9 ((((𝑅 ∈ CRing ∧ 𝑆𝐼) ∧ 𝑢 ∈ (Base‘𝑅)) ∧ 𝑣 ∈ (Base‘𝑅)) → ([𝑣](𝑅 ~QG 𝑆)(.r𝑈)[𝑢](𝑅 ~QG 𝑆)) = [(𝑣(.r𝑅)𝑢)](𝑅 ~QG 𝑆))
4932, 45, 483eqtr4rd 2655 . . . . . . . 8 ((((𝑅 ∈ CRing ∧ 𝑆𝐼) ∧ 𝑢 ∈ (Base‘𝑅)) ∧ 𝑣 ∈ (Base‘𝑅)) → ([𝑣](𝑅 ~QG 𝑆)(.r𝑈)[𝑢](𝑅 ~QG 𝑆)) = ([𝑢](𝑅 ~QG 𝑆)(.r𝑈)[𝑣](𝑅 ~QG 𝑆)))
5020, 26, 49ectocld 7701 . . . . . . 7 ((((𝑅 ∈ CRing ∧ 𝑆𝐼) ∧ 𝑢 ∈ (Base‘𝑅)) ∧ 𝑥 ∈ ((Base‘𝑅) / (𝑅 ~QG 𝑆))) → (𝑥(.r𝑈)[𝑢](𝑅 ~QG 𝑆)) = ([𝑢](𝑅 ~QG 𝑆)(.r𝑈)𝑥))
5150an32s 842 . . . . . 6 ((((𝑅 ∈ CRing ∧ 𝑆𝐼) ∧ 𝑥 ∈ ((Base‘𝑅) / (𝑅 ~QG 𝑆))) ∧ 𝑢 ∈ (Base‘𝑅)) → (𝑥(.r𝑈)[𝑢](𝑅 ~QG 𝑆)) = ([𝑢](𝑅 ~QG 𝑆)(.r𝑈)𝑥))
5220, 23, 51ectocld 7701 . . . . 5 ((((𝑅 ∈ CRing ∧ 𝑆𝐼) ∧ 𝑥 ∈ ((Base‘𝑅) / (𝑅 ~QG 𝑆))) ∧ 𝑦 ∈ ((Base‘𝑅) / (𝑅 ~QG 𝑆))) → (𝑥(.r𝑈)𝑦) = (𝑦(.r𝑈)𝑥))
5352expl 646 . . . 4 ((𝑅 ∈ CRing ∧ 𝑆𝐼) → ((𝑥 ∈ ((Base‘𝑅) / (𝑅 ~QG 𝑆)) ∧ 𝑦 ∈ ((Base‘𝑅) / (𝑅 ~QG 𝑆))) → (𝑥(.r𝑈)𝑦) = (𝑦(.r𝑈)𝑥)))
5419, 53sylbird 249 . . 3 ((𝑅 ∈ CRing ∧ 𝑆𝐼) → ((𝑥 ∈ (Base‘𝑈) ∧ 𝑦 ∈ (Base‘𝑈)) → (𝑥(.r𝑈)𝑦) = (𝑦(.r𝑈)𝑥)))
5554ralrimivv 2953 . 2 ((𝑅 ∈ CRing ∧ 𝑆𝐼) → ∀𝑥 ∈ (Base‘𝑈)∀𝑦 ∈ (Base‘𝑈)(𝑥(.r𝑈)𝑦) = (𝑦(.r𝑈)𝑥))
56 eqid 2610 . . 3 (Base‘𝑈) = (Base‘𝑈)
5756, 43iscrng2 18386 . 2 (𝑈 ∈ CRing ↔ (𝑈 ∈ Ring ∧ ∀𝑥 ∈ (Base‘𝑈)∀𝑦 ∈ (Base‘𝑈)(𝑥(.r𝑈)𝑦) = (𝑦(.r𝑈)𝑥)))
5811, 55, 57sylanbrc 695 1 ((𝑅 ∈ CRing ∧ 𝑆𝐼) → 𝑈 ∈ CRing)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977  ∀wral 2896  Vcvv 3173   class class class wbr 4583  ‘cfv 5804  (class class class)co 6549   Er wer 7626  [cec 7627   / cqs 7628  Basecbs 15695  .rcmulr 15769   /s cqus 15988  SubGrpcsubg 17411   ~QG cqg 17413  Ringcrg 18370  CRingccrg 18371  LIdealclidl 18991  2Idealc2idl 19052 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-tpos 7239  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-ec 7631  df-qs 7635  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-fz 12198  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-0g 15925  df-imas 15991  df-qus 15992  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-minusg 17249  df-sbg 17250  df-subg 17414  df-nsg 17415  df-eqg 17416  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-cring 18373  df-oppr 18446  df-subrg 18601  df-lmod 18688  df-lss 18754  df-lsp 18793  df-sra 18993  df-rgmod 18994  df-lidl 18995  df-rsp 18996  df-2idl 19053 This theorem is referenced by:  zncrng2  19701
 Copyright terms: Public domain W3C validator