Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ectocld | Structured version Visualization version GIF version |
Description: Implicit substitution of class for equivalence class. (Contributed by Mario Carneiro, 9-Jul-2014.) |
Ref | Expression |
---|---|
ectocl.1 | ⊢ 𝑆 = (𝐵 / 𝑅) |
ectocl.2 | ⊢ ([𝑥]𝑅 = 𝐴 → (𝜑 ↔ 𝜓)) |
ectocld.3 | ⊢ ((𝜒 ∧ 𝑥 ∈ 𝐵) → 𝜑) |
Ref | Expression |
---|---|
ectocld | ⊢ ((𝜒 ∧ 𝐴 ∈ 𝑆) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elqsi 7687 | . . . 4 ⊢ (𝐴 ∈ (𝐵 / 𝑅) → ∃𝑥 ∈ 𝐵 𝐴 = [𝑥]𝑅) | |
2 | ectocl.1 | . . . 4 ⊢ 𝑆 = (𝐵 / 𝑅) | |
3 | 1, 2 | eleq2s 2706 | . . 3 ⊢ (𝐴 ∈ 𝑆 → ∃𝑥 ∈ 𝐵 𝐴 = [𝑥]𝑅) |
4 | ectocld.3 | . . . . 5 ⊢ ((𝜒 ∧ 𝑥 ∈ 𝐵) → 𝜑) | |
5 | ectocl.2 | . . . . . 6 ⊢ ([𝑥]𝑅 = 𝐴 → (𝜑 ↔ 𝜓)) | |
6 | 5 | eqcoms 2618 | . . . . 5 ⊢ (𝐴 = [𝑥]𝑅 → (𝜑 ↔ 𝜓)) |
7 | 4, 6 | syl5ibcom 234 | . . . 4 ⊢ ((𝜒 ∧ 𝑥 ∈ 𝐵) → (𝐴 = [𝑥]𝑅 → 𝜓)) |
8 | 7 | rexlimdva 3013 | . . 3 ⊢ (𝜒 → (∃𝑥 ∈ 𝐵 𝐴 = [𝑥]𝑅 → 𝜓)) |
9 | 3, 8 | syl5 33 | . 2 ⊢ (𝜒 → (𝐴 ∈ 𝑆 → 𝜓)) |
10 | 9 | imp 444 | 1 ⊢ ((𝜒 ∧ 𝐴 ∈ 𝑆) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∧ wa 383 = wceq 1475 ∈ wcel 1977 ∃wrex 2897 [cec 7627 / cqs 7628 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ral 2901 df-rex 2902 df-v 3175 df-qs 7635 |
This theorem is referenced by: ectocl 7702 elqsn0 7703 qsdisj 7711 qsel 7713 eqgen 17470 orbsta 17569 sylow1lem3 17838 sylow2alem2 17856 sylow2a 17857 sylow2blem2 17859 frgpup1 18011 frgpup3lem 18013 quscrng 19061 pi1xfr 22663 pi1coghm 22669 vitalilem3 23185 |
Copyright terms: Public domain | W3C validator |