Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrgrp Structured version   Visualization version   GIF version

Theorem psrgrp 19219
 Description: The ring of power series is a group. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypotheses
Ref Expression
psrgrp.s 𝑆 = (𝐼 mPwSer 𝑅)
psrgrp.i (𝜑𝐼𝑉)
psrgrp.r (𝜑𝑅 ∈ Grp)
Assertion
Ref Expression
psrgrp (𝜑𝑆 ∈ Grp)

Proof of Theorem psrgrp
Dummy variables 𝑥 𝑠 𝑟 𝑡 𝑦 𝑧 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2611 . 2 (𝜑 → (Base‘𝑆) = (Base‘𝑆))
2 eqidd 2611 . 2 (𝜑 → (+g𝑆) = (+g𝑆))
3 psrgrp.s . . 3 𝑆 = (𝐼 mPwSer 𝑅)
4 eqid 2610 . . 3 (Base‘𝑆) = (Base‘𝑆)
5 eqid 2610 . . 3 (+g𝑆) = (+g𝑆)
6 psrgrp.r . . . 4 (𝜑𝑅 ∈ Grp)
763ad2ant1 1075 . . 3 ((𝜑𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → 𝑅 ∈ Grp)
8 simp2 1055 . . 3 ((𝜑𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → 𝑥 ∈ (Base‘𝑆))
9 simp3 1056 . . 3 ((𝜑𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → 𝑦 ∈ (Base‘𝑆))
103, 4, 5, 7, 8, 9psraddcl 19204 . 2 ((𝜑𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝑥(+g𝑆)𝑦) ∈ (Base‘𝑆))
11 ovex 6577 . . . . . . 7 (ℕ0𝑚 𝐼) ∈ V
1211rabex 4740 . . . . . 6 {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∈ V
1312a1i 11 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∈ V)
14 eqid 2610 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
15 eqid 2610 . . . . . 6 {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
16 simpr1 1060 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑥 ∈ (Base‘𝑆))
173, 14, 15, 4, 16psrelbas 19200 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑥:{𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
18 simpr2 1061 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑦 ∈ (Base‘𝑆))
193, 14, 15, 4, 18psrelbas 19200 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑦:{𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
20 simpr3 1062 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑧 ∈ (Base‘𝑆))
213, 14, 15, 4, 20psrelbas 19200 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑧:{𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
226adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑅 ∈ Grp)
23 eqid 2610 . . . . . . 7 (+g𝑅) = (+g𝑅)
2414, 23grpass 17254 . . . . . 6 ((𝑅 ∈ Grp ∧ (𝑟 ∈ (Base‘𝑅) ∧ 𝑠 ∈ (Base‘𝑅) ∧ 𝑡 ∈ (Base‘𝑅))) → ((𝑟(+g𝑅)𝑠)(+g𝑅)𝑡) = (𝑟(+g𝑅)(𝑠(+g𝑅)𝑡)))
2522, 24sylan 487 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) ∧ (𝑟 ∈ (Base‘𝑅) ∧ 𝑠 ∈ (Base‘𝑅) ∧ 𝑡 ∈ (Base‘𝑅))) → ((𝑟(+g𝑅)𝑠)(+g𝑅)𝑡) = (𝑟(+g𝑅)(𝑠(+g𝑅)𝑡)))
2613, 17, 19, 21, 25caofass 6829 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → ((𝑥𝑓 (+g𝑅)𝑦) ∘𝑓 (+g𝑅)𝑧) = (𝑥𝑓 (+g𝑅)(𝑦𝑓 (+g𝑅)𝑧)))
273, 4, 23, 5, 16, 18psradd 19203 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → (𝑥(+g𝑆)𝑦) = (𝑥𝑓 (+g𝑅)𝑦))
2827oveq1d 6564 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → ((𝑥(+g𝑆)𝑦) ∘𝑓 (+g𝑅)𝑧) = ((𝑥𝑓 (+g𝑅)𝑦) ∘𝑓 (+g𝑅)𝑧))
293, 4, 23, 5, 18, 20psradd 19203 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → (𝑦(+g𝑆)𝑧) = (𝑦𝑓 (+g𝑅)𝑧))
3029oveq2d 6565 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → (𝑥𝑓 (+g𝑅)(𝑦(+g𝑆)𝑧)) = (𝑥𝑓 (+g𝑅)(𝑦𝑓 (+g𝑅)𝑧)))
3126, 28, 303eqtr4d 2654 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → ((𝑥(+g𝑆)𝑦) ∘𝑓 (+g𝑅)𝑧) = (𝑥𝑓 (+g𝑅)(𝑦(+g𝑆)𝑧)))
32103adant3r3 1268 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → (𝑥(+g𝑆)𝑦) ∈ (Base‘𝑆))
333, 4, 23, 5, 32, 20psradd 19203 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → ((𝑥(+g𝑆)𝑦)(+g𝑆)𝑧) = ((𝑥(+g𝑆)𝑦) ∘𝑓 (+g𝑅)𝑧))
343, 4, 5, 22, 18, 20psraddcl 19204 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → (𝑦(+g𝑆)𝑧) ∈ (Base‘𝑆))
353, 4, 23, 5, 16, 34psradd 19203 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → (𝑥(+g𝑆)(𝑦(+g𝑆)𝑧)) = (𝑥𝑓 (+g𝑅)(𝑦(+g𝑆)𝑧)))
3631, 33, 353eqtr4d 2654 . 2 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → ((𝑥(+g𝑆)𝑦)(+g𝑆)𝑧) = (𝑥(+g𝑆)(𝑦(+g𝑆)𝑧)))
37 psrgrp.i . . 3 (𝜑𝐼𝑉)
38 eqid 2610 . . 3 (0g𝑅) = (0g𝑅)
393, 37, 6, 15, 38, 4psr0cl 19215 . 2 (𝜑 → ({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {(0g𝑅)}) ∈ (Base‘𝑆))
4037adantr 480 . . 3 ((𝜑𝑥 ∈ (Base‘𝑆)) → 𝐼𝑉)
416adantr 480 . . 3 ((𝜑𝑥 ∈ (Base‘𝑆)) → 𝑅 ∈ Grp)
42 simpr 476 . . 3 ((𝜑𝑥 ∈ (Base‘𝑆)) → 𝑥 ∈ (Base‘𝑆))
433, 40, 41, 15, 38, 4, 5, 42psr0lid 19216 . 2 ((𝜑𝑥 ∈ (Base‘𝑆)) → (({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {(0g𝑅)})(+g𝑆)𝑥) = 𝑥)
44 eqid 2610 . . 3 (invg𝑅) = (invg𝑅)
453, 40, 41, 15, 44, 4, 42psrnegcl 19217 . 2 ((𝜑𝑥 ∈ (Base‘𝑆)) → ((invg𝑅) ∘ 𝑥) ∈ (Base‘𝑆))
463, 40, 41, 15, 44, 4, 42, 38, 5psrlinv 19218 . 2 ((𝜑𝑥 ∈ (Base‘𝑆)) → (((invg𝑅) ∘ 𝑥)(+g𝑆)𝑥) = ({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {(0g𝑅)}))
471, 2, 10, 36, 39, 43, 45, 46isgrpd 17267 1 (𝜑𝑆 ∈ Grp)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  {crab 2900  Vcvv 3173  {csn 4125   × cxp 5036  ◡ccnv 5037   “ cima 5041   ∘ ccom 5042  ‘cfv 5804  (class class class)co 6549   ∘𝑓 cof 6793   ↑𝑚 cmap 7744  Fincfn 7841  ℕcn 10897  ℕ0cn0 11169  Basecbs 15695  +gcplusg 15768  0gc0g 15923  Grpcgrp 17245  invgcminusg 17246   mPwSer cmps 19172 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-plusg 15781  df-mulr 15782  df-sca 15784  df-vsca 15785  df-tset 15787  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-minusg 17249  df-psr 19177 This theorem is referenced by:  psr0  19220  psrneg  19221  psrlmod  19222  psrring  19232  mplsubglem  19255
 Copyright terms: Public domain W3C validator