MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caofass Structured version   Visualization version   GIF version

Theorem caofass 6829
Description: Transfer an associative law to the function operation. (Contributed by Mario Carneiro, 26-Jul-2014.)
Hypotheses
Ref Expression
caofref.1 (𝜑𝐴𝑉)
caofref.2 (𝜑𝐹:𝐴𝑆)
caofcom.3 (𝜑𝐺:𝐴𝑆)
caofass.4 (𝜑𝐻:𝐴𝑆)
caofass.5 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥𝑅𝑦)𝑇𝑧) = (𝑥𝑂(𝑦𝑃𝑧)))
Assertion
Ref Expression
caofass (𝜑 → ((𝐹𝑓 𝑅𝐺) ∘𝑓 𝑇𝐻) = (𝐹𝑓 𝑂(𝐺𝑓 𝑃𝐻)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐹   𝑥,𝐺,𝑦,𝑧   𝑥,𝐻,𝑦,𝑧   𝑥,𝑂,𝑦,𝑧   𝑥,𝑃,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝑥,𝑅,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝑥,𝑇,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧)   𝑉(𝑥,𝑦,𝑧)

Proof of Theorem caofass
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 caofass.5 . . . . . 6 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥𝑅𝑦)𝑇𝑧) = (𝑥𝑂(𝑦𝑃𝑧)))
21ralrimivvva 2955 . . . . 5 (𝜑 → ∀𝑥𝑆𝑦𝑆𝑧𝑆 ((𝑥𝑅𝑦)𝑇𝑧) = (𝑥𝑂(𝑦𝑃𝑧)))
32adantr 480 . . . 4 ((𝜑𝑤𝐴) → ∀𝑥𝑆𝑦𝑆𝑧𝑆 ((𝑥𝑅𝑦)𝑇𝑧) = (𝑥𝑂(𝑦𝑃𝑧)))
4 caofref.2 . . . . . 6 (𝜑𝐹:𝐴𝑆)
54ffvelrnda 6267 . . . . 5 ((𝜑𝑤𝐴) → (𝐹𝑤) ∈ 𝑆)
6 caofcom.3 . . . . . 6 (𝜑𝐺:𝐴𝑆)
76ffvelrnda 6267 . . . . 5 ((𝜑𝑤𝐴) → (𝐺𝑤) ∈ 𝑆)
8 caofass.4 . . . . . 6 (𝜑𝐻:𝐴𝑆)
98ffvelrnda 6267 . . . . 5 ((𝜑𝑤𝐴) → (𝐻𝑤) ∈ 𝑆)
10 oveq1 6556 . . . . . . . 8 (𝑥 = (𝐹𝑤) → (𝑥𝑅𝑦) = ((𝐹𝑤)𝑅𝑦))
1110oveq1d 6564 . . . . . . 7 (𝑥 = (𝐹𝑤) → ((𝑥𝑅𝑦)𝑇𝑧) = (((𝐹𝑤)𝑅𝑦)𝑇𝑧))
12 oveq1 6556 . . . . . . 7 (𝑥 = (𝐹𝑤) → (𝑥𝑂(𝑦𝑃𝑧)) = ((𝐹𝑤)𝑂(𝑦𝑃𝑧)))
1311, 12eqeq12d 2625 . . . . . 6 (𝑥 = (𝐹𝑤) → (((𝑥𝑅𝑦)𝑇𝑧) = (𝑥𝑂(𝑦𝑃𝑧)) ↔ (((𝐹𝑤)𝑅𝑦)𝑇𝑧) = ((𝐹𝑤)𝑂(𝑦𝑃𝑧))))
14 oveq2 6557 . . . . . . . 8 (𝑦 = (𝐺𝑤) → ((𝐹𝑤)𝑅𝑦) = ((𝐹𝑤)𝑅(𝐺𝑤)))
1514oveq1d 6564 . . . . . . 7 (𝑦 = (𝐺𝑤) → (((𝐹𝑤)𝑅𝑦)𝑇𝑧) = (((𝐹𝑤)𝑅(𝐺𝑤))𝑇𝑧))
16 oveq1 6556 . . . . . . . 8 (𝑦 = (𝐺𝑤) → (𝑦𝑃𝑧) = ((𝐺𝑤)𝑃𝑧))
1716oveq2d 6565 . . . . . . 7 (𝑦 = (𝐺𝑤) → ((𝐹𝑤)𝑂(𝑦𝑃𝑧)) = ((𝐹𝑤)𝑂((𝐺𝑤)𝑃𝑧)))
1815, 17eqeq12d 2625 . . . . . 6 (𝑦 = (𝐺𝑤) → ((((𝐹𝑤)𝑅𝑦)𝑇𝑧) = ((𝐹𝑤)𝑂(𝑦𝑃𝑧)) ↔ (((𝐹𝑤)𝑅(𝐺𝑤))𝑇𝑧) = ((𝐹𝑤)𝑂((𝐺𝑤)𝑃𝑧))))
19 oveq2 6557 . . . . . . 7 (𝑧 = (𝐻𝑤) → (((𝐹𝑤)𝑅(𝐺𝑤))𝑇𝑧) = (((𝐹𝑤)𝑅(𝐺𝑤))𝑇(𝐻𝑤)))
20 oveq2 6557 . . . . . . . 8 (𝑧 = (𝐻𝑤) → ((𝐺𝑤)𝑃𝑧) = ((𝐺𝑤)𝑃(𝐻𝑤)))
2120oveq2d 6565 . . . . . . 7 (𝑧 = (𝐻𝑤) → ((𝐹𝑤)𝑂((𝐺𝑤)𝑃𝑧)) = ((𝐹𝑤)𝑂((𝐺𝑤)𝑃(𝐻𝑤))))
2219, 21eqeq12d 2625 . . . . . 6 (𝑧 = (𝐻𝑤) → ((((𝐹𝑤)𝑅(𝐺𝑤))𝑇𝑧) = ((𝐹𝑤)𝑂((𝐺𝑤)𝑃𝑧)) ↔ (((𝐹𝑤)𝑅(𝐺𝑤))𝑇(𝐻𝑤)) = ((𝐹𝑤)𝑂((𝐺𝑤)𝑃(𝐻𝑤)))))
2313, 18, 22rspc3v 3296 . . . . 5 (((𝐹𝑤) ∈ 𝑆 ∧ (𝐺𝑤) ∈ 𝑆 ∧ (𝐻𝑤) ∈ 𝑆) → (∀𝑥𝑆𝑦𝑆𝑧𝑆 ((𝑥𝑅𝑦)𝑇𝑧) = (𝑥𝑂(𝑦𝑃𝑧)) → (((𝐹𝑤)𝑅(𝐺𝑤))𝑇(𝐻𝑤)) = ((𝐹𝑤)𝑂((𝐺𝑤)𝑃(𝐻𝑤)))))
245, 7, 9, 23syl3anc 1318 . . . 4 ((𝜑𝑤𝐴) → (∀𝑥𝑆𝑦𝑆𝑧𝑆 ((𝑥𝑅𝑦)𝑇𝑧) = (𝑥𝑂(𝑦𝑃𝑧)) → (((𝐹𝑤)𝑅(𝐺𝑤))𝑇(𝐻𝑤)) = ((𝐹𝑤)𝑂((𝐺𝑤)𝑃(𝐻𝑤)))))
253, 24mpd 15 . . 3 ((𝜑𝑤𝐴) → (((𝐹𝑤)𝑅(𝐺𝑤))𝑇(𝐻𝑤)) = ((𝐹𝑤)𝑂((𝐺𝑤)𝑃(𝐻𝑤))))
2625mpteq2dva 4672 . 2 (𝜑 → (𝑤𝐴 ↦ (((𝐹𝑤)𝑅(𝐺𝑤))𝑇(𝐻𝑤))) = (𝑤𝐴 ↦ ((𝐹𝑤)𝑂((𝐺𝑤)𝑃(𝐻𝑤)))))
27 caofref.1 . . 3 (𝜑𝐴𝑉)
28 ovex 6577 . . . 4 ((𝐹𝑤)𝑅(𝐺𝑤)) ∈ V
2928a1i 11 . . 3 ((𝜑𝑤𝐴) → ((𝐹𝑤)𝑅(𝐺𝑤)) ∈ V)
304feqmptd 6159 . . . 4 (𝜑𝐹 = (𝑤𝐴 ↦ (𝐹𝑤)))
316feqmptd 6159 . . . 4 (𝜑𝐺 = (𝑤𝐴 ↦ (𝐺𝑤)))
3227, 5, 7, 30, 31offval2 6812 . . 3 (𝜑 → (𝐹𝑓 𝑅𝐺) = (𝑤𝐴 ↦ ((𝐹𝑤)𝑅(𝐺𝑤))))
338feqmptd 6159 . . 3 (𝜑𝐻 = (𝑤𝐴 ↦ (𝐻𝑤)))
3427, 29, 9, 32, 33offval2 6812 . 2 (𝜑 → ((𝐹𝑓 𝑅𝐺) ∘𝑓 𝑇𝐻) = (𝑤𝐴 ↦ (((𝐹𝑤)𝑅(𝐺𝑤))𝑇(𝐻𝑤))))
35 ovex 6577 . . . 4 ((𝐺𝑤)𝑃(𝐻𝑤)) ∈ V
3635a1i 11 . . 3 ((𝜑𝑤𝐴) → ((𝐺𝑤)𝑃(𝐻𝑤)) ∈ V)
3727, 7, 9, 31, 33offval2 6812 . . 3 (𝜑 → (𝐺𝑓 𝑃𝐻) = (𝑤𝐴 ↦ ((𝐺𝑤)𝑃(𝐻𝑤))))
3827, 5, 36, 30, 37offval2 6812 . 2 (𝜑 → (𝐹𝑓 𝑂(𝐺𝑓 𝑃𝐻)) = (𝑤𝐴 ↦ ((𝐹𝑤)𝑂((𝐺𝑤)𝑃(𝐻𝑤)))))
3926, 34, 383eqtr4d 2654 1 (𝜑 → ((𝐹𝑓 𝑅𝐺) ∘𝑓 𝑇𝐻) = (𝐹𝑓 𝑂(𝐺𝑓 𝑃𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  Vcvv 3173  cmpt 4643  wf 5800  cfv 5804  (class class class)co 6549  𝑓 cof 6793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795
This theorem is referenced by:  psrgrp  19219  psrlmod  19222  mndvass  20017  itg2mulc  23320  plydivlem4  23855  dchrabl  24779  lfladdass  33378  lflvsass  33386  expgrowth  37556
  Copyright terms: Public domain W3C validator