MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrgrp Structured version   Unicode version

Theorem psrgrp 18030
Description: The ring of power series is a group. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypotheses
Ref Expression
psrgrp.s  |-  S  =  ( I mPwSer  R )
psrgrp.i  |-  ( ph  ->  I  e.  V )
psrgrp.r  |-  ( ph  ->  R  e.  Grp )
Assertion
Ref Expression
psrgrp  |-  ( ph  ->  S  e.  Grp )

Proof of Theorem psrgrp
Dummy variables  x  s  r  t  y 
z  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2444 . 2  |-  ( ph  ->  ( Base `  S
)  =  ( Base `  S ) )
2 eqidd 2444 . 2  |-  ( ph  ->  ( +g  `  S
)  =  ( +g  `  S ) )
3 psrgrp.s . . 3  |-  S  =  ( I mPwSer  R )
4 eqid 2443 . . 3  |-  ( Base `  S )  =  (
Base `  S )
5 eqid 2443 . . 3  |-  ( +g  `  S )  =  ( +g  `  S )
6 psrgrp.r . . . 4  |-  ( ph  ->  R  e.  Grp )
763ad2ant1 1018 . . 3  |-  ( (
ph  /\  x  e.  ( Base `  S )  /\  y  e.  ( Base `  S ) )  ->  R  e.  Grp )
8 simp2 998 . . 3  |-  ( (
ph  /\  x  e.  ( Base `  S )  /\  y  e.  ( Base `  S ) )  ->  x  e.  (
Base `  S )
)
9 simp3 999 . . 3  |-  ( (
ph  /\  x  e.  ( Base `  S )  /\  y  e.  ( Base `  S ) )  ->  y  e.  (
Base `  S )
)
103, 4, 5, 7, 8, 9psraddcl 18015 . 2  |-  ( (
ph  /\  x  e.  ( Base `  S )  /\  y  e.  ( Base `  S ) )  ->  ( x ( +g  `  S ) y )  e.  (
Base `  S )
)
11 ovex 6309 . . . . . . 7  |-  ( NN0 
^m  I )  e. 
_V
1211rabex 4588 . . . . . 6  |-  { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }  e.  _V
1312a1i 11 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( Base `  S
)  /\  y  e.  ( Base `  S )  /\  z  e.  ( Base `  S ) ) )  ->  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin }  e.  _V )
14 eqid 2443 . . . . . 6  |-  ( Base `  R )  =  (
Base `  R )
15 eqid 2443 . . . . . 6  |-  { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }  =  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }
16 simpr1 1003 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( Base `  S
)  /\  y  e.  ( Base `  S )  /\  z  e.  ( Base `  S ) ) )  ->  x  e.  ( Base `  S )
)
173, 14, 15, 4, 16psrelbas 18011 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( Base `  S
)  /\  y  e.  ( Base `  S )  /\  z  e.  ( Base `  S ) ) )  ->  x : { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } --> ( Base `  R
) )
18 simpr2 1004 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( Base `  S
)  /\  y  e.  ( Base `  S )  /\  z  e.  ( Base `  S ) ) )  ->  y  e.  ( Base `  S )
)
193, 14, 15, 4, 18psrelbas 18011 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( Base `  S
)  /\  y  e.  ( Base `  S )  /\  z  e.  ( Base `  S ) ) )  ->  y : { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } --> ( Base `  R
) )
20 simpr3 1005 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( Base `  S
)  /\  y  e.  ( Base `  S )  /\  z  e.  ( Base `  S ) ) )  ->  z  e.  ( Base `  S )
)
213, 14, 15, 4, 20psrelbas 18011 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( Base `  S
)  /\  y  e.  ( Base `  S )  /\  z  e.  ( Base `  S ) ) )  ->  z : { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } --> ( Base `  R
) )
226adantr 465 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( Base `  S
)  /\  y  e.  ( Base `  S )  /\  z  e.  ( Base `  S ) ) )  ->  R  e.  Grp )
23 eqid 2443 . . . . . . 7  |-  ( +g  `  R )  =  ( +g  `  R )
2414, 23grpass 16043 . . . . . 6  |-  ( ( R  e.  Grp  /\  ( r  e.  (
Base `  R )  /\  s  e.  ( Base `  R )  /\  t  e.  ( Base `  R ) ) )  ->  ( ( r ( +g  `  R
) s ) ( +g  `  R ) t )  =  ( r ( +g  `  R
) ( s ( +g  `  R ) t ) ) )
2522, 24sylan 471 . . . . 5  |-  ( ( ( ph  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( Base `  S
)  /\  z  e.  ( Base `  S )
) )  /\  (
r  e.  ( Base `  R )  /\  s  e.  ( Base `  R
)  /\  t  e.  ( Base `  R )
) )  ->  (
( r ( +g  `  R ) s ) ( +g  `  R
) t )  =  ( r ( +g  `  R ) ( s ( +g  `  R
) t ) ) )
2613, 17, 19, 21, 25caofass 6559 . . . 4  |-  ( (
ph  /\  ( x  e.  ( Base `  S
)  /\  y  e.  ( Base `  S )  /\  z  e.  ( Base `  S ) ) )  ->  ( (
x  oF ( +g  `  R ) y )  oF ( +g  `  R
) z )  =  ( x  oF ( +g  `  R
) ( y  oF ( +g  `  R
) z ) ) )
273, 4, 23, 5, 16, 18psradd 18014 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( Base `  S
)  /\  y  e.  ( Base `  S )  /\  z  e.  ( Base `  S ) ) )  ->  ( x
( +g  `  S ) y )  =  ( x  oF ( +g  `  R ) y ) )
2827oveq1d 6296 . . . 4  |-  ( (
ph  /\  ( x  e.  ( Base `  S
)  /\  y  e.  ( Base `  S )  /\  z  e.  ( Base `  S ) ) )  ->  ( (
x ( +g  `  S
) y )  oF ( +g  `  R
) z )  =  ( ( x  oF ( +g  `  R
) y )  oF ( +g  `  R
) z ) )
293, 4, 23, 5, 18, 20psradd 18014 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( Base `  S
)  /\  y  e.  ( Base `  S )  /\  z  e.  ( Base `  S ) ) )  ->  ( y
( +g  `  S ) z )  =  ( y  oF ( +g  `  R ) z ) )
3029oveq2d 6297 . . . 4  |-  ( (
ph  /\  ( x  e.  ( Base `  S
)  /\  y  e.  ( Base `  S )  /\  z  e.  ( Base `  S ) ) )  ->  ( x  oF ( +g  `  R ) ( y ( +g  `  S
) z ) )  =  ( x  oF ( +g  `  R
) ( y  oF ( +g  `  R
) z ) ) )
3126, 28, 303eqtr4d 2494 . . 3  |-  ( (
ph  /\  ( x  e.  ( Base `  S
)  /\  y  e.  ( Base `  S )  /\  z  e.  ( Base `  S ) ) )  ->  ( (
x ( +g  `  S
) y )  oF ( +g  `  R
) z )  =  ( x  oF ( +g  `  R
) ( y ( +g  `  S ) z ) ) )
32103adant3r3 1208 . . . 4  |-  ( (
ph  /\  ( x  e.  ( Base `  S
)  /\  y  e.  ( Base `  S )  /\  z  e.  ( Base `  S ) ) )  ->  ( x
( +g  `  S ) y )  e.  (
Base `  S )
)
333, 4, 23, 5, 32, 20psradd 18014 . . 3  |-  ( (
ph  /\  ( x  e.  ( Base `  S
)  /\  y  e.  ( Base `  S )  /\  z  e.  ( Base `  S ) ) )  ->  ( (
x ( +g  `  S
) y ) ( +g  `  S ) z )  =  ( ( x ( +g  `  S ) y )  oF ( +g  `  R ) z ) )
343, 4, 5, 22, 18, 20psraddcl 18015 . . . 4  |-  ( (
ph  /\  ( x  e.  ( Base `  S
)  /\  y  e.  ( Base `  S )  /\  z  e.  ( Base `  S ) ) )  ->  ( y
( +g  `  S ) z )  e.  (
Base `  S )
)
353, 4, 23, 5, 16, 34psradd 18014 . . 3  |-  ( (
ph  /\  ( x  e.  ( Base `  S
)  /\  y  e.  ( Base `  S )  /\  z  e.  ( Base `  S ) ) )  ->  ( x
( +g  `  S ) ( y ( +g  `  S ) z ) )  =  ( x  oF ( +g  `  R ) ( y ( +g  `  S
) z ) ) )
3631, 33, 353eqtr4d 2494 . 2  |-  ( (
ph  /\  ( x  e.  ( Base `  S
)  /\  y  e.  ( Base `  S )  /\  z  e.  ( Base `  S ) ) )  ->  ( (
x ( +g  `  S
) y ) ( +g  `  S ) z )  =  ( x ( +g  `  S
) ( y ( +g  `  S ) z ) ) )
37 psrgrp.i . . 3  |-  ( ph  ->  I  e.  V )
38 eqid 2443 . . 3  |-  ( 0g
`  R )  =  ( 0g `  R
)
393, 37, 6, 15, 38, 4psr0cl 18026 . 2  |-  ( ph  ->  ( { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin }  X.  { ( 0g `  R ) } )  e.  ( Base `  S
) )
4037adantr 465 . . 3  |-  ( (
ph  /\  x  e.  ( Base `  S )
)  ->  I  e.  V )
416adantr 465 . . 3  |-  ( (
ph  /\  x  e.  ( Base `  S )
)  ->  R  e.  Grp )
42 simpr 461 . . 3  |-  ( (
ph  /\  x  e.  ( Base `  S )
)  ->  x  e.  ( Base `  S )
)
433, 40, 41, 15, 38, 4, 5, 42psr0lid 18027 . 2  |-  ( (
ph  /\  x  e.  ( Base `  S )
)  ->  ( ( { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }  X.  { ( 0g `  R ) } ) ( +g  `  S ) x )  =  x )
44 eqid 2443 . . 3  |-  ( invg `  R )  =  ( invg `  R )
453, 40, 41, 15, 44, 4, 42psrnegcl 18028 . 2  |-  ( (
ph  /\  x  e.  ( Base `  S )
)  ->  ( ( invg `  R )  o.  x )  e.  ( Base `  S
) )
463, 40, 41, 15, 44, 4, 42, 38, 5psrlinv 18029 . 2  |-  ( (
ph  /\  x  e.  ( Base `  S )
)  ->  ( (
( invg `  R )  o.  x
) ( +g  `  S
) x )  =  ( { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin }  X.  { ( 0g `  R ) } ) )
471, 2, 10, 36, 39, 43, 45, 46isgrpd 16054 1  |-  ( ph  ->  S  e.  Grp )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 974    = wceq 1383    e. wcel 1804   {crab 2797   _Vcvv 3095   {csn 4014    X. cxp 4987   `'ccnv 4988   "cima 4992    o. ccom 4993   ` cfv 5578  (class class class)co 6281    oFcof 6523    ^m cmap 7422   Fincfn 7518   NNcn 10543   NN0cn0 10802   Basecbs 14614   +g cplusg 14679   0gc0g 14819   Grpcgrp 16032   invgcminusg 16033   mPwSer cmps 17979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-rep 4548  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577  ax-cnex 9551  ax-resscn 9552  ax-1cn 9553  ax-icn 9554  ax-addcl 9555  ax-addrcl 9556  ax-mulcl 9557  ax-mulrcl 9558  ax-mulcom 9559  ax-addass 9560  ax-mulass 9561  ax-distr 9562  ax-i2m1 9563  ax-1ne0 9564  ax-1rid 9565  ax-rnegex 9566  ax-rrecex 9567  ax-cnre 9568  ax-pre-lttri 9569  ax-pre-lttrn 9570  ax-pre-ltadd 9571  ax-pre-mulgt0 9572
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-nel 2641  df-ral 2798  df-rex 2799  df-reu 2800  df-rmo 2801  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-tp 4019  df-op 4021  df-uni 4235  df-int 4272  df-iun 4317  df-br 4438  df-opab 4496  df-mpt 4497  df-tr 4531  df-eprel 4781  df-id 4785  df-po 4790  df-so 4791  df-fr 4828  df-we 4830  df-ord 4871  df-on 4872  df-lim 4873  df-suc 4874  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-riota 6242  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-of 6525  df-om 6686  df-1st 6785  df-2nd 6786  df-supp 6904  df-recs 7044  df-rdg 7078  df-1o 7132  df-oadd 7136  df-er 7313  df-map 7424  df-en 7519  df-dom 7520  df-sdom 7521  df-fin 7522  df-fsupp 7832  df-pnf 9633  df-mnf 9634  df-xr 9635  df-ltxr 9636  df-le 9637  df-sub 9812  df-neg 9813  df-nn 10544  df-2 10601  df-3 10602  df-4 10603  df-5 10604  df-6 10605  df-7 10606  df-8 10607  df-9 10608  df-n0 10803  df-z 10872  df-uz 11093  df-fz 11684  df-struct 14616  df-ndx 14617  df-slot 14618  df-base 14619  df-plusg 14692  df-mulr 14693  df-sca 14695  df-vsca 14696  df-tset 14698  df-0g 14821  df-mgm 15851  df-sgrp 15890  df-mnd 15900  df-grp 16036  df-minusg 16037  df-psr 17984
This theorem is referenced by:  psr0  18031  psrneg  18032  psrlmod  18033  psrring  18045  mplsubglem  18072  mplsubglemOLD  18074
  Copyright terms: Public domain W3C validator