MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psgneldm2 Structured version   Visualization version   GIF version

Theorem psgneldm2 17747
Description: The finitary permutations are the span of the transpositions. (Contributed by Stefan O'Rear, 28-Aug-2015.)
Hypotheses
Ref Expression
psgnval.g 𝐺 = (SymGrp‘𝐷)
psgnval.t 𝑇 = ran (pmTrsp‘𝐷)
psgnval.n 𝑁 = (pmSgn‘𝐷)
Assertion
Ref Expression
psgneldm2 (𝐷𝑉 → (𝑃 ∈ dom 𝑁 ↔ ∃𝑤 ∈ Word 𝑇𝑃 = (𝐺 Σg 𝑤)))
Distinct variable groups:   𝑤,𝐺   𝑤,𝑁   𝑤,𝑃   𝑤,𝑇   𝑤,𝐷
Allowed substitution hint:   𝑉(𝑤)

Proof of Theorem psgneldm2
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 psgnval.g . . . . . 6 𝐺 = (SymGrp‘𝐷)
2 eqid 2610 . . . . . 6 (Base‘𝐺) = (Base‘𝐺)
3 eqid 2610 . . . . . 6 {𝑝 ∈ (Base‘𝐺) ∣ dom (𝑝 ∖ I ) ∈ Fin} = {𝑝 ∈ (Base‘𝐺) ∣ dom (𝑝 ∖ I ) ∈ Fin}
4 psgnval.n . . . . . 6 𝑁 = (pmSgn‘𝐷)
51, 2, 3, 4psgnfn 17744 . . . . 5 𝑁 Fn {𝑝 ∈ (Base‘𝐺) ∣ dom (𝑝 ∖ I ) ∈ Fin}
6 fndm 5904 . . . . 5 (𝑁 Fn {𝑝 ∈ (Base‘𝐺) ∣ dom (𝑝 ∖ I ) ∈ Fin} → dom 𝑁 = {𝑝 ∈ (Base‘𝐺) ∣ dom (𝑝 ∖ I ) ∈ Fin})
75, 6ax-mp 5 . . . 4 dom 𝑁 = {𝑝 ∈ (Base‘𝐺) ∣ dom (𝑝 ∖ I ) ∈ Fin}
8 psgnval.t . . . . . 6 𝑇 = ran (pmTrsp‘𝐷)
9 eqid 2610 . . . . . 6 (mrCls‘(SubMnd‘𝐺)) = (mrCls‘(SubMnd‘𝐺))
108, 1, 2, 9symggen 17713 . . . . 5 (𝐷𝑉 → ((mrCls‘(SubMnd‘𝐺))‘𝑇) = {𝑝 ∈ (Base‘𝐺) ∣ dom (𝑝 ∖ I ) ∈ Fin})
111symggrp 17643 . . . . . . 7 (𝐷𝑉𝐺 ∈ Grp)
12 grpmnd 17252 . . . . . . 7 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
1311, 12syl 17 . . . . . 6 (𝐷𝑉𝐺 ∈ Mnd)
148, 1, 2symgtrf 17712 . . . . . 6 𝑇 ⊆ (Base‘𝐺)
152, 9gsumwspan 17206 . . . . . 6 ((𝐺 ∈ Mnd ∧ 𝑇 ⊆ (Base‘𝐺)) → ((mrCls‘(SubMnd‘𝐺))‘𝑇) = ran (𝑤 ∈ Word 𝑇 ↦ (𝐺 Σg 𝑤)))
1613, 14, 15sylancl 693 . . . . 5 (𝐷𝑉 → ((mrCls‘(SubMnd‘𝐺))‘𝑇) = ran (𝑤 ∈ Word 𝑇 ↦ (𝐺 Σg 𝑤)))
1710, 16eqtr3d 2646 . . . 4 (𝐷𝑉 → {𝑝 ∈ (Base‘𝐺) ∣ dom (𝑝 ∖ I ) ∈ Fin} = ran (𝑤 ∈ Word 𝑇 ↦ (𝐺 Σg 𝑤)))
187, 17syl5eq 2656 . . 3 (𝐷𝑉 → dom 𝑁 = ran (𝑤 ∈ Word 𝑇 ↦ (𝐺 Σg 𝑤)))
1918eleq2d 2673 . 2 (𝐷𝑉 → (𝑃 ∈ dom 𝑁𝑃 ∈ ran (𝑤 ∈ Word 𝑇 ↦ (𝐺 Σg 𝑤))))
20 eqid 2610 . . 3 (𝑤 ∈ Word 𝑇 ↦ (𝐺 Σg 𝑤)) = (𝑤 ∈ Word 𝑇 ↦ (𝐺 Σg 𝑤))
21 ovex 6577 . . 3 (𝐺 Σg 𝑤) ∈ V
2220, 21elrnmpti 5297 . 2 (𝑃 ∈ ran (𝑤 ∈ Word 𝑇 ↦ (𝐺 Σg 𝑤)) ↔ ∃𝑤 ∈ Word 𝑇𝑃 = (𝐺 Σg 𝑤))
2319, 22syl6bb 275 1 (𝐷𝑉 → (𝑃 ∈ dom 𝑁 ↔ ∃𝑤 ∈ Word 𝑇𝑃 = (𝐺 Σg 𝑤)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195   = wceq 1475  wcel 1977  wrex 2897  {crab 2900  cdif 3537  wss 3540  cmpt 4643   I cid 4948  dom cdm 5038  ran crn 5039   Fn wfn 5799  cfv 5804  (class class class)co 6549  Fincfn 7841  Word cword 13146  Basecbs 15695   Σg cgsu 15924  mrClscmrc 16066  Mndcmnd 17117  SubMndcsubmnd 17157  Grpcgrp 17245  SymGrpcsymg 17620  pmTrspcpmtr 17684  pmSgncpsgn 17732
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-seq 12664  df-hash 12980  df-word 13154  df-concat 13156  df-s1 13157  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-tset 15787  df-0g 15925  df-gsum 15926  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-grp 17248  df-minusg 17249  df-subg 17414  df-symg 17621  df-pmtr 17685  df-psgn 17734
This theorem is referenced by:  psgneldm2i  17748  psgneu  17749
  Copyright terms: Public domain W3C validator