MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmlem0 Structured version   Visualization version   GIF version

Theorem prmlem0 15650
Description: Lemma for prmlem1 15652 and prmlem2 15665. (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypotheses
Ref Expression
prmlem0.1 ((¬ 2 ∥ 𝑀𝑥 ∈ (ℤ𝑀)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁))
prmlem0.2 (𝐾 ∈ ℙ → ¬ 𝐾𝑁)
prmlem0.3 (𝐾 + 2) = 𝑀
Assertion
Ref Expression
prmlem0 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁))
Distinct variable group:   𝑥,𝑁
Allowed substitution hints:   𝐾(𝑥)   𝑀(𝑥)

Proof of Theorem prmlem0
StepHypRef Expression
1 eldifi 3694 . . . . 5 (𝑥 ∈ (ℙ ∖ {2}) → 𝑥 ∈ ℙ)
2 prmlem0.2 . . . . . 6 (𝐾 ∈ ℙ → ¬ 𝐾𝑁)
3 eleq1 2676 . . . . . . 7 (𝑥 = 𝐾 → (𝑥 ∈ ℙ ↔ 𝐾 ∈ ℙ))
4 breq1 4586 . . . . . . . 8 (𝑥 = 𝐾 → (𝑥𝑁𝐾𝑁))
54notbid 307 . . . . . . 7 (𝑥 = 𝐾 → (¬ 𝑥𝑁 ↔ ¬ 𝐾𝑁))
63, 5imbi12d 333 . . . . . 6 (𝑥 = 𝐾 → ((𝑥 ∈ ℙ → ¬ 𝑥𝑁) ↔ (𝐾 ∈ ℙ → ¬ 𝐾𝑁)))
72, 6mpbiri 247 . . . . 5 (𝑥 = 𝐾 → (𝑥 ∈ ℙ → ¬ 𝑥𝑁))
81, 7syl5 33 . . . 4 (𝑥 = 𝐾 → (𝑥 ∈ (ℙ ∖ {2}) → ¬ 𝑥𝑁))
98adantrd 483 . . 3 (𝑥 = 𝐾 → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁))
109a1i 11 . 2 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → (𝑥 = 𝐾 → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁)))
11 uzp1 11597 . . 3 (𝑥 ∈ (ℤ‘(𝐾 + 1)) → (𝑥 = (𝐾 + 1) ∨ 𝑥 ∈ (ℤ‘((𝐾 + 1) + 1))))
12 eleq1 2676 . . . . . . . 8 (𝑥 = (𝐾 + 1) → (𝑥 ∈ (ℙ ∖ {2}) ↔ (𝐾 + 1) ∈ (ℙ ∖ {2})))
1312adantl 481 . . . . . . 7 (((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) ∧ 𝑥 = (𝐾 + 1)) → (𝑥 ∈ (ℙ ∖ {2}) ↔ (𝐾 + 1) ∈ (ℙ ∖ {2})))
14 eldifsn 4260 . . . . . . . . 9 ((𝐾 + 1) ∈ (ℙ ∖ {2}) ↔ ((𝐾 + 1) ∈ ℙ ∧ (𝐾 + 1) ≠ 2))
15 eluzel2 11568 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (ℤ𝐾) → 𝐾 ∈ ℤ)
1615adantl 481 . . . . . . . . . . . . . . . 16 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → 𝐾 ∈ ℤ)
17 simpl 472 . . . . . . . . . . . . . . . 16 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → ¬ 2 ∥ 𝐾)
18 1z 11284 . . . . . . . . . . . . . . . . 17 1 ∈ ℤ
19 n2dvds1 14942 . . . . . . . . . . . . . . . . 17 ¬ 2 ∥ 1
20 opoe 14925 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ ℤ ∧ ¬ 2 ∥ 𝐾) ∧ (1 ∈ ℤ ∧ ¬ 2 ∥ 1)) → 2 ∥ (𝐾 + 1))
2118, 19, 20mpanr12 717 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ ℤ ∧ ¬ 2 ∥ 𝐾) → 2 ∥ (𝐾 + 1))
2216, 17, 21syl2anc 691 . . . . . . . . . . . . . . 15 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → 2 ∥ (𝐾 + 1))
2322adantr 480 . . . . . . . . . . . . . 14 (((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) ∧ (𝐾 + 1) ∈ ℙ) → 2 ∥ (𝐾 + 1))
24 2z 11286 . . . . . . . . . . . . . . . 16 2 ∈ ℤ
25 uzid 11578 . . . . . . . . . . . . . . . 16 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
2624, 25mp1i 13 . . . . . . . . . . . . . . 15 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → 2 ∈ (ℤ‘2))
27 dvdsprm 15253 . . . . . . . . . . . . . . 15 ((2 ∈ (ℤ‘2) ∧ (𝐾 + 1) ∈ ℙ) → (2 ∥ (𝐾 + 1) ↔ 2 = (𝐾 + 1)))
2826, 27sylan 487 . . . . . . . . . . . . . 14 (((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) ∧ (𝐾 + 1) ∈ ℙ) → (2 ∥ (𝐾 + 1) ↔ 2 = (𝐾 + 1)))
2923, 28mpbid 221 . . . . . . . . . . . . 13 (((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) ∧ (𝐾 + 1) ∈ ℙ) → 2 = (𝐾 + 1))
3029eqcomd 2616 . . . . . . . . . . . 12 (((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) ∧ (𝐾 + 1) ∈ ℙ) → (𝐾 + 1) = 2)
3130a1d 25 . . . . . . . . . . 11 (((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) ∧ (𝐾 + 1) ∈ ℙ) → (𝑥𝑁 → (𝐾 + 1) = 2))
3231necon3ad 2795 . . . . . . . . . 10 (((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) ∧ (𝐾 + 1) ∈ ℙ) → ((𝐾 + 1) ≠ 2 → ¬ 𝑥𝑁))
3332expimpd 627 . . . . . . . . 9 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → (((𝐾 + 1) ∈ ℙ ∧ (𝐾 + 1) ≠ 2) → ¬ 𝑥𝑁))
3414, 33syl5bi 231 . . . . . . . 8 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → ((𝐾 + 1) ∈ (ℙ ∖ {2}) → ¬ 𝑥𝑁))
3534adantr 480 . . . . . . 7 (((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) ∧ 𝑥 = (𝐾 + 1)) → ((𝐾 + 1) ∈ (ℙ ∖ {2}) → ¬ 𝑥𝑁))
3613, 35sylbid 229 . . . . . 6 (((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) ∧ 𝑥 = (𝐾 + 1)) → (𝑥 ∈ (ℙ ∖ {2}) → ¬ 𝑥𝑁))
3736adantrd 483 . . . . 5 (((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) ∧ 𝑥 = (𝐾 + 1)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁))
3837ex 449 . . . 4 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → (𝑥 = (𝐾 + 1) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁)))
3916zcnd 11359 . . . . . . . . 9 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → 𝐾 ∈ ℂ)
40 ax-1cn 9873 . . . . . . . . . 10 1 ∈ ℂ
41 addass 9902 . . . . . . . . . 10 ((𝐾 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐾 + 1) + 1) = (𝐾 + (1 + 1)))
4240, 40, 41mp3an23 1408 . . . . . . . . 9 (𝐾 ∈ ℂ → ((𝐾 + 1) + 1) = (𝐾 + (1 + 1)))
4339, 42syl 17 . . . . . . . 8 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → ((𝐾 + 1) + 1) = (𝐾 + (1 + 1)))
44 1p1e2 11011 . . . . . . . . . 10 (1 + 1) = 2
4544oveq2i 6560 . . . . . . . . 9 (𝐾 + (1 + 1)) = (𝐾 + 2)
46 prmlem0.3 . . . . . . . . 9 (𝐾 + 2) = 𝑀
4745, 46eqtri 2632 . . . . . . . 8 (𝐾 + (1 + 1)) = 𝑀
4843, 47syl6eq 2660 . . . . . . 7 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → ((𝐾 + 1) + 1) = 𝑀)
4948fveq2d 6107 . . . . . 6 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → (ℤ‘((𝐾 + 1) + 1)) = (ℤ𝑀))
5049eleq2d 2673 . . . . 5 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → (𝑥 ∈ (ℤ‘((𝐾 + 1) + 1)) ↔ 𝑥 ∈ (ℤ𝑀)))
51 dvdsaddr 14863 . . . . . . . . 9 ((2 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (2 ∥ 𝐾 ↔ 2 ∥ (𝐾 + 2)))
5224, 16, 51sylancr 694 . . . . . . . 8 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → (2 ∥ 𝐾 ↔ 2 ∥ (𝐾 + 2)))
5346breq2i 4591 . . . . . . . 8 (2 ∥ (𝐾 + 2) ↔ 2 ∥ 𝑀)
5452, 53syl6bb 275 . . . . . . 7 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → (2 ∥ 𝐾 ↔ 2 ∥ 𝑀))
5517, 54mtbid 313 . . . . . 6 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → ¬ 2 ∥ 𝑀)
56 prmlem0.1 . . . . . . 7 ((¬ 2 ∥ 𝑀𝑥 ∈ (ℤ𝑀)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁))
5756ex 449 . . . . . 6 (¬ 2 ∥ 𝑀 → (𝑥 ∈ (ℤ𝑀) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁)))
5855, 57syl 17 . . . . 5 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → (𝑥 ∈ (ℤ𝑀) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁)))
5950, 58sylbid 229 . . . 4 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → (𝑥 ∈ (ℤ‘((𝐾 + 1) + 1)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁)))
6038, 59jaod 394 . . 3 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → ((𝑥 = (𝐾 + 1) ∨ 𝑥 ∈ (ℤ‘((𝐾 + 1) + 1))) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁)))
6111, 60syl5 33 . 2 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → (𝑥 ∈ (ℤ‘(𝐾 + 1)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁)))
62 uzp1 11597 . . 3 (𝑥 ∈ (ℤ𝐾) → (𝑥 = 𝐾𝑥 ∈ (ℤ‘(𝐾 + 1))))
6362adantl 481 . 2 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → (𝑥 = 𝐾𝑥 ∈ (ℤ‘(𝐾 + 1))))
6410, 61, 63mpjaod 395 1 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383   = wceq 1475  wcel 1977  wne 2780  cdif 3537  {csn 4125   class class class wbr 4583  cfv 5804  (class class class)co 6549  cc 9813  1c1 9816   + caddc 9818  cle 9954  2c2 10947  cz 11254  cuz 11563  cexp 12722  cdvds 14821  cprime 15223
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-dvds 14822  df-prm 15224
This theorem is referenced by:  prmlem1a  15651  prmlem2  15665
  Copyright terms: Public domain W3C validator