MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmlem2 Structured version   Visualization version   GIF version

Theorem prmlem2 15665
Description: Our last proving session got as far as 25 because we started with the two "bootstrap" primes 2 and 3, and the next prime is 5, so knowing that 2 and 3 are prime and 4 is not allows us to cover the numbers less than 5↑2 = 25. Additionally, nonprimes are "easy", so we can extend this range of known prime/nonprimes all the way until 29, which is the first prime larger than 25. Thus, in this lemma we extend another blanket out to 29↑2 = 841, from which we can prove even more primes. If we wanted, we could keep doing this, but the goal is Bertrand's postulate, and for that we only need a few large primes - we don't need to find them all, as we have been doing thus far. So after this blanket runs out, we'll have to switch to another method (see 1259prm 15681).

As a side note, you can see the pattern of the primes in the indentation pattern of this lemma! (Contributed by Mario Carneiro, 18-Feb-2014.) (Proof shortened by Mario Carneiro, 20-Apr-2015.)

Hypotheses
Ref Expression
prmlem2.n 𝑁 ∈ ℕ
prmlem2.lt 𝑁 < 841
prmlem2.gt 1 < 𝑁
prmlem2.2 ¬ 2 ∥ 𝑁
prmlem2.3 ¬ 3 ∥ 𝑁
prmlem2.5 ¬ 5 ∥ 𝑁
prmlem2.7 ¬ 7 ∥ 𝑁
prmlem2.11 ¬ 11 ∥ 𝑁
prmlem2.13 ¬ 13 ∥ 𝑁
prmlem2.17 ¬ 17 ∥ 𝑁
prmlem2.19 ¬ 19 ∥ 𝑁
prmlem2.23 ¬ 23 ∥ 𝑁
Assertion
Ref Expression
prmlem2 𝑁 ∈ ℙ

Proof of Theorem prmlem2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 prmlem2.n . 2 𝑁 ∈ ℕ
2 prmlem2.gt . 2 1 < 𝑁
3 prmlem2.2 . 2 ¬ 2 ∥ 𝑁
4 prmlem2.3 . 2 ¬ 3 ∥ 𝑁
5 eluzelre 11574 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (ℤ29) → 𝑥 ∈ ℝ)
65resqcld 12897 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (ℤ29) → (𝑥↑2) ∈ ℝ)
7 eluzle 11576 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (ℤ29) → 29 ≤ 𝑥)
8 2nn0 11186 . . . . . . . . . . . . . . . . . . . . . . 23 2 ∈ ℕ0
9 9nn0 11193 . . . . . . . . . . . . . . . . . . . . . . 23 9 ∈ ℕ0
108, 9deccl 11388 . . . . . . . . . . . . . . . . . . . . . 22 29 ∈ ℕ0
1110nn0rei 11180 . . . . . . . . . . . . . . . . . . . . 21 29 ∈ ℝ
1210nn0ge0i 11197 . . . . . . . . . . . . . . . . . . . . 21 0 ≤ 29
13 le2sq2 12801 . . . . . . . . . . . . . . . . . . . . 21 (((29 ∈ ℝ ∧ 0 ≤ 29) ∧ (𝑥 ∈ ℝ ∧ 29 ≤ 𝑥)) → (29↑2) ≤ (𝑥↑2))
1411, 12, 13mpanl12 714 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ℝ ∧ 29 ≤ 𝑥) → (29↑2) ≤ (𝑥↑2))
155, 7, 14syl2anc 691 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (ℤ29) → (29↑2) ≤ (𝑥↑2))
161nnrei 10906 . . . . . . . . . . . . . . . . . . . 20 𝑁 ∈ ℝ
1711resqcli 12811 . . . . . . . . . . . . . . . . . . . 20 (29↑2) ∈ ℝ
18 prmlem2.lt . . . . . . . . . . . . . . . . . . . . . 22 𝑁 < 841
1910nn0cni 11181 . . . . . . . . . . . . . . . . . . . . . . . 24 29 ∈ ℂ
2019sqvali 12805 . . . . . . . . . . . . . . . . . . . . . . 23 (29↑2) = (29 · 29)
21 eqid 2610 . . . . . . . . . . . . . . . . . . . . . . . 24 29 = 29
22 1nn0 11185 . . . . . . . . . . . . . . . . . . . . . . . 24 1 ∈ ℕ0
23 6nn0 11190 . . . . . . . . . . . . . . . . . . . . . . . . 25 6 ∈ ℕ0
248, 23deccl 11388 . . . . . . . . . . . . . . . . . . . . . . . 24 26 ∈ ℕ0
25 5nn0 11189 . . . . . . . . . . . . . . . . . . . . . . . . 25 5 ∈ ℕ0
26 8nn0 11192 . . . . . . . . . . . . . . . . . . . . . . . . 25 8 ∈ ℕ0
27192timesi 11024 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (2 · 29) = (29 + 29)
28 2p2e4 11021 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (2 + 2) = 4
2928oveq1i 6559 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((2 + 2) + 1) = (4 + 1)
30 4p1e5 11031 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (4 + 1) = 5
3129, 30eqtri 2632 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((2 + 2) + 1) = 5
32 9p9e18 11503 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (9 + 9) = 18
338, 9, 8, 9, 21, 21, 31, 26, 32decaddc 11448 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (29 + 29) = 58
3427, 33eqtri 2632 . . . . . . . . . . . . . . . . . . . . . . . . 25 (2 · 29) = 58
35 eqid 2610 . . . . . . . . . . . . . . . . . . . . . . . . 25 26 = 26
36 5p2e7 11042 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (5 + 2) = 7
3736oveq1i 6559 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((5 + 2) + 1) = (7 + 1)
38 7p1e8 11034 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (7 + 1) = 8
3937, 38eqtri 2632 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((5 + 2) + 1) = 8
40 4nn0 11188 . . . . . . . . . . . . . . . . . . . . . . . . 25 4 ∈ ℕ0
41 8p6e14 11492 . . . . . . . . . . . . . . . . . . . . . . . . 25 (8 + 6) = 14
4225, 26, 8, 23, 34, 35, 39, 40, 41decaddc 11448 . . . . . . . . . . . . . . . . . . . . . . . 24 ((2 · 29) + 26) = 84
43 9t2e18 11539 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (9 · 2) = 18
44 1p1e2 11011 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (1 + 1) = 2
45 8p8e16 11494 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (8 + 8) = 16
4622, 26, 26, 43, 44, 23, 45decaddci 11456 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((9 · 2) + 8) = 26
47 9t9e81 11546 . . . . . . . . . . . . . . . . . . . . . . . . 25 (9 · 9) = 81
489, 8, 9, 21, 22, 26, 46, 47decmul2c 11465 . . . . . . . . . . . . . . . . . . . . . . . 24 (9 · 29) = 261
4910, 8, 9, 21, 22, 24, 42, 48decmul1c 11463 . . . . . . . . . . . . . . . . . . . . . . 23 (29 · 29) = 841
5020, 49eqtri 2632 . . . . . . . . . . . . . . . . . . . . . 22 (29↑2) = 841
5118, 50breqtrri 4610 . . . . . . . . . . . . . . . . . . . . 21 𝑁 < (29↑2)
52 ltletr 10008 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ ℝ ∧ (29↑2) ∈ ℝ ∧ (𝑥↑2) ∈ ℝ) → ((𝑁 < (29↑2) ∧ (29↑2) ≤ (𝑥↑2)) → 𝑁 < (𝑥↑2)))
5351, 52mpani 708 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℝ ∧ (29↑2) ∈ ℝ ∧ (𝑥↑2) ∈ ℝ) → ((29↑2) ≤ (𝑥↑2) → 𝑁 < (𝑥↑2)))
5416, 17, 53mp3an12 1406 . . . . . . . . . . . . . . . . . . 19 ((𝑥↑2) ∈ ℝ → ((29↑2) ≤ (𝑥↑2) → 𝑁 < (𝑥↑2)))
556, 15, 54sylc 63 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (ℤ29) → 𝑁 < (𝑥↑2))
56 ltnle 9996 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℝ ∧ (𝑥↑2) ∈ ℝ) → (𝑁 < (𝑥↑2) ↔ ¬ (𝑥↑2) ≤ 𝑁))
5716, 6, 56sylancr 694 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (ℤ29) → (𝑁 < (𝑥↑2) ↔ ¬ (𝑥↑2) ≤ 𝑁))
5855, 57mpbid 221 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (ℤ29) → ¬ (𝑥↑2) ≤ 𝑁)
5958pm2.21d 117 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (ℤ29) → ((𝑥↑2) ≤ 𝑁 → ¬ 𝑥𝑁))
6059adantld 482 . . . . . . . . . . . . . . 15 (𝑥 ∈ (ℤ29) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁))
6160adantl 481 . . . . . . . . . . . . . 14 ((¬ 2 ∥ 29 ∧ 𝑥 ∈ (ℤ29)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁))
62 9nn 11069 . . . . . . . . . . . . . . . 16 9 ∈ ℕ
63 3nn 11063 . . . . . . . . . . . . . . . 16 3 ∈ ℕ
64 1lt9 11106 . . . . . . . . . . . . . . . 16 1 < 9
65 1lt3 11073 . . . . . . . . . . . . . . . 16 1 < 3
66 9t3e27 11540 . . . . . . . . . . . . . . . 16 (9 · 3) = 27
6762, 63, 64, 65, 66nprmi 15240 . . . . . . . . . . . . . . 15 ¬ 27 ∈ ℙ
6867pm2.21i 115 . . . . . . . . . . . . . 14 (27 ∈ ℙ → ¬ 27 ∥ 𝑁)
69 7nn0 11191 . . . . . . . . . . . . . . 15 7 ∈ ℕ0
70 eqid 2610 . . . . . . . . . . . . . . 15 27 = 27
71 7p2e9 11049 . . . . . . . . . . . . . . 15 (7 + 2) = 9
728, 69, 8, 70, 71decaddi 11455 . . . . . . . . . . . . . 14 (27 + 2) = 29
7361, 68, 72prmlem0 15650 . . . . . . . . . . . . 13 ((¬ 2 ∥ 27 ∧ 𝑥 ∈ (ℤ27)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁))
74 5nn 11065 . . . . . . . . . . . . . . 15 5 ∈ ℕ
75 1lt5 11080 . . . . . . . . . . . . . . 15 1 < 5
76 5t5e25 11515 . . . . . . . . . . . . . . 15 (5 · 5) = 25
7774, 74, 75, 75, 76nprmi 15240 . . . . . . . . . . . . . 14 ¬ 25 ∈ ℙ
7877pm2.21i 115 . . . . . . . . . . . . 13 (25 ∈ ℙ → ¬ 25 ∥ 𝑁)
79 eqid 2610 . . . . . . . . . . . . . 14 25 = 25
808, 25, 8, 79, 36decaddi 11455 . . . . . . . . . . . . 13 (25 + 2) = 27
8173, 78, 80prmlem0 15650 . . . . . . . . . . . 12 ((¬ 2 ∥ 25 ∧ 𝑥 ∈ (ℤ25)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁))
82 prmlem2.23 . . . . . . . . . . . . 13 ¬ 23 ∥ 𝑁
8382a1i 11 . . . . . . . . . . . 12 (23 ∈ ℙ → ¬ 23 ∥ 𝑁)
84 3nn0 11187 . . . . . . . . . . . . 13 3 ∈ ℕ0
85 eqid 2610 . . . . . . . . . . . . 13 23 = 23
86 3p2e5 11037 . . . . . . . . . . . . 13 (3 + 2) = 5
878, 84, 8, 85, 86decaddi 11455 . . . . . . . . . . . 12 (23 + 2) = 25
8881, 83, 87prmlem0 15650 . . . . . . . . . . 11 ((¬ 2 ∥ 23 ∧ 𝑥 ∈ (ℤ23)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁))
89 7nn 11067 . . . . . . . . . . . . 13 7 ∈ ℕ
90 1lt7 11091 . . . . . . . . . . . . 13 1 < 7
91 7t3e21 11525 . . . . . . . . . . . . 13 (7 · 3) = 21
9289, 63, 90, 65, 91nprmi 15240 . . . . . . . . . . . 12 ¬ 21 ∈ ℙ
9392pm2.21i 115 . . . . . . . . . . 11 (21 ∈ ℙ → ¬ 21 ∥ 𝑁)
94 eqid 2610 . . . . . . . . . . . 12 21 = 21
95 1p2e3 11029 . . . . . . . . . . . 12 (1 + 2) = 3
968, 22, 8, 94, 95decaddi 11455 . . . . . . . . . . 11 (21 + 2) = 23
9788, 93, 96prmlem0 15650 . . . . . . . . . 10 ((¬ 2 ∥ 21 ∧ 𝑥 ∈ (ℤ21)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁))
98 prmlem2.19 . . . . . . . . . . 11 ¬ 19 ∥ 𝑁
9998a1i 11 . . . . . . . . . 10 (19 ∈ ℙ → ¬ 19 ∥ 𝑁)
100 eqid 2610 . . . . . . . . . . 11 19 = 19
101 9p2e11 11495 . . . . . . . . . . 11 (9 + 2) = 11
10222, 9, 8, 100, 44, 22, 101decaddci 11456 . . . . . . . . . 10 (19 + 2) = 21
10397, 99, 102prmlem0 15650 . . . . . . . . 9 ((¬ 2 ∥ 19 ∧ 𝑥 ∈ (ℤ19)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁))
104 prmlem2.17 . . . . . . . . . 10 ¬ 17 ∥ 𝑁
105104a1i 11 . . . . . . . . 9 (17 ∈ ℙ → ¬ 17 ∥ 𝑁)
106 eqid 2610 . . . . . . . . . 10 17 = 17
10722, 69, 8, 106, 71decaddi 11455 . . . . . . . . 9 (17 + 2) = 19
108103, 105, 107prmlem0 15650 . . . . . . . 8 ((¬ 2 ∥ 17 ∧ 𝑥 ∈ (ℤ17)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁))
109 5t3e15 11511 . . . . . . . . . 10 (5 · 3) = 15
11074, 63, 75, 65, 109nprmi 15240 . . . . . . . . 9 ¬ 15 ∈ ℙ
111110pm2.21i 115 . . . . . . . 8 (15 ∈ ℙ → ¬ 15 ∥ 𝑁)
112 eqid 2610 . . . . . . . . 9 15 = 15
11322, 25, 8, 112, 36decaddi 11455 . . . . . . . 8 (15 + 2) = 17
114108, 111, 113prmlem0 15650 . . . . . . 7 ((¬ 2 ∥ 15 ∧ 𝑥 ∈ (ℤ15)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁))
115 prmlem2.13 . . . . . . . 8 ¬ 13 ∥ 𝑁
116115a1i 11 . . . . . . 7 (13 ∈ ℙ → ¬ 13 ∥ 𝑁)
117 eqid 2610 . . . . . . . 8 13 = 13
11822, 84, 8, 117, 86decaddi 11455 . . . . . . 7 (13 + 2) = 15
119114, 116, 118prmlem0 15650 . . . . . 6 ((¬ 2 ∥ 13 ∧ 𝑥 ∈ (ℤ13)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁))
120 prmlem2.11 . . . . . . 7 ¬ 11 ∥ 𝑁
121120a1i 11 . . . . . 6 (11 ∈ ℙ → ¬ 11 ∥ 𝑁)
122 eqid 2610 . . . . . . 7 11 = 11
12322, 22, 8, 122, 95decaddi 11455 . . . . . 6 (11 + 2) = 13
124119, 121, 123prmlem0 15650 . . . . 5 ((¬ 2 ∥ 11 ∧ 𝑥 ∈ (ℤ11)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁))
125 9nprm 15657 . . . . . 6 ¬ 9 ∈ ℙ
126125pm2.21i 115 . . . . 5 (9 ∈ ℙ → ¬ 9 ∥ 𝑁)
127124, 126, 101prmlem0 15650 . . . 4 ((¬ 2 ∥ 9 ∧ 𝑥 ∈ (ℤ‘9)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁))
128 prmlem2.7 . . . . 5 ¬ 7 ∥ 𝑁
129128a1i 11 . . . 4 (7 ∈ ℙ → ¬ 7 ∥ 𝑁)
130127, 129, 71prmlem0 15650 . . 3 ((¬ 2 ∥ 7 ∧ 𝑥 ∈ (ℤ‘7)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁))
131 prmlem2.5 . . . 4 ¬ 5 ∥ 𝑁
132131a1i 11 . . 3 (5 ∈ ℙ → ¬ 5 ∥ 𝑁)
133130, 132, 36prmlem0 15650 . 2 ((¬ 2 ∥ 5 ∧ 𝑥 ∈ (ℤ‘5)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁))
1341, 2, 3, 4, 133prmlem1a 15651 1 𝑁 ∈ ℙ
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3a 1031  wcel 1977  cdif 3537  {csn 4125   class class class wbr 4583  cfv 5804  (class class class)co 6549  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820   < clt 9953  cle 9954  cn 10897  2c2 10947  3c3 10948  4c4 10949  5c5 10950  6c6 10951  7c7 10952  8c8 10953  9c9 10954  cdc 11369  cuz 11563  cexp 12722  cdvds 14821  cprime 15223
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-rp 11709  df-fz 12198  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-dvds 14822  df-prm 15224
This theorem is referenced by:  37prm  15666  43prm  15667  83prm  15668  139prm  15669  163prm  15670  317prm  15671  631prm  15672  257prm  40011  139prmALT  40049  127prm  40053
  Copyright terms: Public domain W3C validator