MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmlem0 Structured version   Unicode version

Theorem prmlem0 15076
Description: Lemma for prmlem1 15078 and prmlem2 15090. (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypotheses
Ref Expression
prmlem0.1  |-  ( ( -.  2  ||  M  /\  x  e.  ( ZZ>=
`  M ) )  ->  ( ( x  e.  ( Prime  \  {
2 } )  /\  ( x ^ 2 )  <_  N )  ->  -.  x  ||  N
) )
prmlem0.2  |-  ( K  e.  Prime  ->  -.  K  ||  N )
prmlem0.3  |-  ( K  +  2 )  =  M
Assertion
Ref Expression
prmlem0  |-  ( ( -.  2  ||  K  /\  x  e.  ( ZZ>=
`  K ) )  ->  ( ( x  e.  ( Prime  \  {
2 } )  /\  ( x ^ 2 )  <_  N )  ->  -.  x  ||  N
) )
Distinct variable group:    x, N
Allowed substitution hints:    K( x)    M( x)

Proof of Theorem prmlem0
StepHypRef Expression
1 eldifi 3587 . . . . 5  |-  ( x  e.  ( Prime  \  {
2 } )  ->  x  e.  Prime )
2 prmlem0.2 . . . . . 6  |-  ( K  e.  Prime  ->  -.  K  ||  N )
3 eleq1 2495 . . . . . . 7  |-  ( x  =  K  ->  (
x  e.  Prime  <->  K  e.  Prime ) )
4 breq1 4426 . . . . . . . 8  |-  ( x  =  K  ->  (
x  ||  N  <->  K  ||  N
) )
54notbid 295 . . . . . . 7  |-  ( x  =  K  ->  ( -.  x  ||  N  <->  -.  K  ||  N ) )
63, 5imbi12d 321 . . . . . 6  |-  ( x  =  K  ->  (
( x  e.  Prime  ->  -.  x  ||  N )  <-> 
( K  e.  Prime  ->  -.  K  ||  N ) ) )
72, 6mpbiri 236 . . . . 5  |-  ( x  =  K  ->  (
x  e.  Prime  ->  -.  x  ||  N ) )
81, 7syl5 33 . . . 4  |-  ( x  =  K  ->  (
x  e.  ( Prime  \  { 2 } )  ->  -.  x  ||  N
) )
98adantrd 469 . . 3  |-  ( x  =  K  ->  (
( x  e.  ( Prime  \  { 2 } )  /\  (
x ^ 2 )  <_  N )  ->  -.  x  ||  N ) )
109a1i 11 . 2  |-  ( ( -.  2  ||  K  /\  x  e.  ( ZZ>=
`  K ) )  ->  ( x  =  K  ->  ( (
x  e.  ( Prime  \  { 2 } )  /\  ( x ^
2 )  <_  N
)  ->  -.  x  ||  N ) ) )
11 uzp1 11199 . . 3  |-  ( x  e.  ( ZZ>= `  ( K  +  1 ) )  ->  ( x  =  ( K  + 
1 )  \/  x  e.  ( ZZ>= `  ( ( K  +  1 )  +  1 ) ) ) )
12 eleq1 2495 . . . . . . . 8  |-  ( x  =  ( K  + 
1 )  ->  (
x  e.  ( Prime  \  { 2 } )  <-> 
( K  +  1 )  e.  ( Prime  \  { 2 } ) ) )
1312adantl 467 . . . . . . 7  |-  ( ( ( -.  2  ||  K  /\  x  e.  (
ZZ>= `  K ) )  /\  x  =  ( K  +  1 ) )  ->  ( x  e.  ( Prime  \  { 2 } )  <->  ( K  +  1 )  e.  ( Prime  \  { 2 } ) ) )
14 eldifsn 4125 . . . . . . . . 9  |-  ( ( K  +  1 )  e.  ( Prime  \  {
2 } )  <->  ( ( K  +  1 )  e.  Prime  /\  ( K  +  1 )  =/=  2 ) )
15 eluzel2 11171 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ( ZZ>= `  K
)  ->  K  e.  ZZ )
1615adantl 467 . . . . . . . . . . . . . . . 16  |-  ( ( -.  2  ||  K  /\  x  e.  ( ZZ>=
`  K ) )  ->  K  e.  ZZ )
17 simpl 458 . . . . . . . . . . . . . . . 16  |-  ( ( -.  2  ||  K  /\  x  e.  ( ZZ>=
`  K ) )  ->  -.  2  ||  K )
18 1z 10974 . . . . . . . . . . . . . . . . 17  |-  1  e.  ZZ
19 n2dvds1 14353 . . . . . . . . . . . . . . . . 17  |-  -.  2  ||  1
20 opoe 14760 . . . . . . . . . . . . . . . . 17  |-  ( ( ( K  e.  ZZ  /\ 
-.  2  ||  K
)  /\  ( 1  e.  ZZ  /\  -.  2  ||  1 ) )  ->  2  ||  ( K  +  1 ) )
2118, 19, 20mpanr12 689 . . . . . . . . . . . . . . . 16  |-  ( ( K  e.  ZZ  /\  -.  2  ||  K )  ->  2  ||  ( K  +  1 ) )
2216, 17, 21syl2anc 665 . . . . . . . . . . . . . . 15  |-  ( ( -.  2  ||  K  /\  x  e.  ( ZZ>=
`  K ) )  ->  2  ||  ( K  +  1 ) )
2322adantr 466 . . . . . . . . . . . . . 14  |-  ( ( ( -.  2  ||  K  /\  x  e.  (
ZZ>= `  K ) )  /\  ( K  + 
1 )  e.  Prime )  ->  2  ||  ( K  +  1 ) )
24 2z 10976 . . . . . . . . . . . . . . . 16  |-  2  e.  ZZ
25 uzid 11180 . . . . . . . . . . . . . . . 16  |-  ( 2  e.  ZZ  ->  2  e.  ( ZZ>= `  2 )
)
2624, 25mp1i 13 . . . . . . . . . . . . . . 15  |-  ( ( -.  2  ||  K  /\  x  e.  ( ZZ>=
`  K ) )  ->  2  e.  (
ZZ>= `  2 ) )
27 dvdsprm 14646 . . . . . . . . . . . . . . 15  |-  ( ( 2  e.  ( ZZ>= ` 
2 )  /\  ( K  +  1 )  e.  Prime )  ->  (
2  ||  ( K  +  1 )  <->  2  =  ( K  +  1
) ) )
2826, 27sylan 473 . . . . . . . . . . . . . 14  |-  ( ( ( -.  2  ||  K  /\  x  e.  (
ZZ>= `  K ) )  /\  ( K  + 
1 )  e.  Prime )  ->  ( 2  ||  ( K  +  1
)  <->  2  =  ( K  +  1 ) ) )
2923, 28mpbid 213 . . . . . . . . . . . . 13  |-  ( ( ( -.  2  ||  K  /\  x  e.  (
ZZ>= `  K ) )  /\  ( K  + 
1 )  e.  Prime )  ->  2  =  ( K  +  1 ) )
3029eqcomd 2430 . . . . . . . . . . . 12  |-  ( ( ( -.  2  ||  K  /\  x  e.  (
ZZ>= `  K ) )  /\  ( K  + 
1 )  e.  Prime )  ->  ( K  + 
1 )  =  2 )
3130a1d 26 . . . . . . . . . . 11  |-  ( ( ( -.  2  ||  K  /\  x  e.  (
ZZ>= `  K ) )  /\  ( K  + 
1 )  e.  Prime )  ->  ( x  ||  N  ->  ( K  + 
1 )  =  2 ) )
3231necon3ad 2630 . . . . . . . . . 10  |-  ( ( ( -.  2  ||  K  /\  x  e.  (
ZZ>= `  K ) )  /\  ( K  + 
1 )  e.  Prime )  ->  ( ( K  +  1 )  =/=  2  ->  -.  x  ||  N ) )
3332expimpd 606 . . . . . . . . 9  |-  ( ( -.  2  ||  K  /\  x  e.  ( ZZ>=
`  K ) )  ->  ( ( ( K  +  1 )  e.  Prime  /\  ( K  +  1 )  =/=  2 )  ->  -.  x  ||  N ) )
3414, 33syl5bi 220 . . . . . . . 8  |-  ( ( -.  2  ||  K  /\  x  e.  ( ZZ>=
`  K ) )  ->  ( ( K  +  1 )  e.  ( Prime  \  { 2 } )  ->  -.  x  ||  N ) )
3534adantr 466 . . . . . . 7  |-  ( ( ( -.  2  ||  K  /\  x  e.  (
ZZ>= `  K ) )  /\  x  =  ( K  +  1 ) )  ->  ( ( K  +  1 )  e.  ( Prime  \  {
2 } )  ->  -.  x  ||  N ) )
3613, 35sylbid 218 . . . . . 6  |-  ( ( ( -.  2  ||  K  /\  x  e.  (
ZZ>= `  K ) )  /\  x  =  ( K  +  1 ) )  ->  ( x  e.  ( Prime  \  { 2 } )  ->  -.  x  ||  N ) )
3736adantrd 469 . . . . 5  |-  ( ( ( -.  2  ||  K  /\  x  e.  (
ZZ>= `  K ) )  /\  x  =  ( K  +  1 ) )  ->  ( (
x  e.  ( Prime  \  { 2 } )  /\  ( x ^
2 )  <_  N
)  ->  -.  x  ||  N ) )
3837ex 435 . . . 4  |-  ( ( -.  2  ||  K  /\  x  e.  ( ZZ>=
`  K ) )  ->  ( x  =  ( K  +  1 )  ->  ( (
x  e.  ( Prime  \  { 2 } )  /\  ( x ^
2 )  <_  N
)  ->  -.  x  ||  N ) ) )
3916zcnd 11048 . . . . . . . . 9  |-  ( ( -.  2  ||  K  /\  x  e.  ( ZZ>=
`  K ) )  ->  K  e.  CC )
40 ax-1cn 9604 . . . . . . . . . 10  |-  1  e.  CC
41 addass 9633 . . . . . . . . . 10  |-  ( ( K  e.  CC  /\  1  e.  CC  /\  1  e.  CC )  ->  (
( K  +  1 )  +  1 )  =  ( K  +  ( 1  +  1 ) ) )
4240, 40, 41mp3an23 1352 . . . . . . . . 9  |-  ( K  e.  CC  ->  (
( K  +  1 )  +  1 )  =  ( K  +  ( 1  +  1 ) ) )
4339, 42syl 17 . . . . . . . 8  |-  ( ( -.  2  ||  K  /\  x  e.  ( ZZ>=
`  K ) )  ->  ( ( K  +  1 )  +  1 )  =  ( K  +  ( 1  +  1 ) ) )
44 1p1e2 10730 . . . . . . . . . 10  |-  ( 1  +  1 )  =  2
4544oveq2i 6316 . . . . . . . . 9  |-  ( K  +  ( 1  +  1 ) )  =  ( K  +  2 )
46 prmlem0.3 . . . . . . . . 9  |-  ( K  +  2 )  =  M
4745, 46eqtri 2451 . . . . . . . 8  |-  ( K  +  ( 1  +  1 ) )  =  M
4843, 47syl6eq 2479 . . . . . . 7  |-  ( ( -.  2  ||  K  /\  x  e.  ( ZZ>=
`  K ) )  ->  ( ( K  +  1 )  +  1 )  =  M )
4948fveq2d 5885 . . . . . 6  |-  ( ( -.  2  ||  K  /\  x  e.  ( ZZ>=
`  K ) )  ->  ( ZZ>= `  (
( K  +  1 )  +  1 ) )  =  ( ZZ>= `  M ) )
5049eleq2d 2492 . . . . 5  |-  ( ( -.  2  ||  K  /\  x  e.  ( ZZ>=
`  K ) )  ->  ( x  e.  ( ZZ>= `  ( ( K  +  1 )  +  1 ) )  <-> 
x  e.  ( ZZ>= `  M ) ) )
51 dvdsaddr 14343 . . . . . . . . 9  |-  ( ( 2  e.  ZZ  /\  K  e.  ZZ )  ->  ( 2  ||  K  <->  2 
||  ( K  + 
2 ) ) )
5224, 16, 51sylancr 667 . . . . . . . 8  |-  ( ( -.  2  ||  K  /\  x  e.  ( ZZ>=
`  K ) )  ->  ( 2  ||  K 
<->  2  ||  ( K  +  2 ) ) )
5346breq2i 4431 . . . . . . . 8  |-  ( 2 
||  ( K  + 
2 )  <->  2  ||  M )
5452, 53syl6bb 264 . . . . . . 7  |-  ( ( -.  2  ||  K  /\  x  e.  ( ZZ>=
`  K ) )  ->  ( 2  ||  K 
<->  2  ||  M ) )
5517, 54mtbid 301 . . . . . 6  |-  ( ( -.  2  ||  K  /\  x  e.  ( ZZ>=
`  K ) )  ->  -.  2  ||  M )
56 prmlem0.1 . . . . . . 7  |-  ( ( -.  2  ||  M  /\  x  e.  ( ZZ>=
`  M ) )  ->  ( ( x  e.  ( Prime  \  {
2 } )  /\  ( x ^ 2 )  <_  N )  ->  -.  x  ||  N
) )
5756ex 435 . . . . . 6  |-  ( -.  2  ||  M  -> 
( x  e.  (
ZZ>= `  M )  -> 
( ( x  e.  ( Prime  \  { 2 } )  /\  (
x ^ 2 )  <_  N )  ->  -.  x  ||  N ) ) )
5855, 57syl 17 . . . . 5  |-  ( ( -.  2  ||  K  /\  x  e.  ( ZZ>=
`  K ) )  ->  ( x  e.  ( ZZ>= `  M )  ->  ( ( x  e.  ( Prime  \  { 2 } )  /\  (
x ^ 2 )  <_  N )  ->  -.  x  ||  N ) ) )
5950, 58sylbid 218 . . . 4  |-  ( ( -.  2  ||  K  /\  x  e.  ( ZZ>=
`  K ) )  ->  ( x  e.  ( ZZ>= `  ( ( K  +  1 )  +  1 ) )  ->  ( ( x  e.  ( Prime  \  {
2 } )  /\  ( x ^ 2 )  <_  N )  ->  -.  x  ||  N
) ) )
6038, 59jaod 381 . . 3  |-  ( ( -.  2  ||  K  /\  x  e.  ( ZZ>=
`  K ) )  ->  ( ( x  =  ( K  + 
1 )  \/  x  e.  ( ZZ>= `  ( ( K  +  1 )  +  1 ) ) )  ->  ( (
x  e.  ( Prime  \  { 2 } )  /\  ( x ^
2 )  <_  N
)  ->  -.  x  ||  N ) ) )
6111, 60syl5 33 . 2  |-  ( ( -.  2  ||  K  /\  x  e.  ( ZZ>=
`  K ) )  ->  ( x  e.  ( ZZ>= `  ( K  +  1 ) )  ->  ( ( x  e.  ( Prime  \  {
2 } )  /\  ( x ^ 2 )  <_  N )  ->  -.  x  ||  N
) ) )
62 uzp1 11199 . . 3  |-  ( x  e.  ( ZZ>= `  K
)  ->  ( x  =  K  \/  x  e.  ( ZZ>= `  ( K  +  1 ) ) ) )
6362adantl 467 . 2  |-  ( ( -.  2  ||  K  /\  x  e.  ( ZZ>=
`  K ) )  ->  ( x  =  K  \/  x  e.  ( ZZ>= `  ( K  +  1 ) ) ) )
6410, 61, 63mpjaod 382 1  |-  ( ( -.  2  ||  K  /\  x  e.  ( ZZ>=
`  K ) )  ->  ( ( x  e.  ( Prime  \  {
2 } )  /\  ( x ^ 2 )  <_  N )  ->  -.  x  ||  N
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 187    \/ wo 369    /\ wa 370    = wceq 1437    e. wcel 1872    =/= wne 2614    \ cdif 3433   {csn 3998   class class class wbr 4423   ` cfv 5601  (class class class)co 6305   CCcc 9544   1c1 9547    + caddc 9549    <_ cle 9683   2c2 10666   ZZcz 10944   ZZ>=cuz 11166   ^cexp 12278    || cdvds 14304   Primecprime 14621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2057  ax-ext 2401  ax-sep 4546  ax-nul 4555  ax-pow 4602  ax-pr 4660  ax-un 6597  ax-cnex 9602  ax-resscn 9603  ax-1cn 9604  ax-icn 9605  ax-addcl 9606  ax-addrcl 9607  ax-mulcl 9608  ax-mulrcl 9609  ax-mulcom 9610  ax-addass 9611  ax-mulass 9612  ax-distr 9613  ax-i2m1 9614  ax-1ne0 9615  ax-1rid 9616  ax-rnegex 9617  ax-rrecex 9618  ax-cnre 9619  ax-pre-lttri 9620  ax-pre-lttrn 9621  ax-pre-ltadd 9622  ax-pre-mulgt0 9623
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2273  df-mo 2274  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2568  df-ne 2616  df-nel 2617  df-ral 2776  df-rex 2777  df-reu 2778  df-rmo 2779  df-rab 2780  df-v 3082  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-pss 3452  df-nul 3762  df-if 3912  df-pw 3983  df-sn 3999  df-pr 4001  df-tp 4003  df-op 4005  df-uni 4220  df-int 4256  df-iun 4301  df-br 4424  df-opab 4483  df-mpt 4484  df-tr 4519  df-eprel 4764  df-id 4768  df-po 4774  df-so 4775  df-fr 4812  df-we 4814  df-xp 4859  df-rel 4860  df-cnv 4861  df-co 4862  df-dm 4863  df-rn 4864  df-res 4865  df-ima 4866  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-om 6707  df-wrecs 7039  df-recs 7101  df-rdg 7139  df-1o 7193  df-2o 7194  df-oadd 7197  df-er 7374  df-en 7581  df-dom 7582  df-sdom 7583  df-fin 7584  df-pnf 9684  df-mnf 9685  df-xr 9686  df-ltxr 9687  df-le 9688  df-sub 9869  df-neg 9870  df-div 10277  df-nn 10617  df-2 10675  df-n0 10877  df-z 10945  df-uz 11167  df-dvds 14305  df-prm 14622
This theorem is referenced by:  prmlem1a  15077  prmlem2  15090
  Copyright terms: Public domain W3C validator