MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omopthlem1 Structured version   Visualization version   GIF version

Theorem omopthlem1 7622
Description: Lemma for omopthi 7624. (Contributed by Scott Fenton, 18-Apr-2012.) (Revised by Mario Carneiro, 17-Nov-2014.)
Hypotheses
Ref Expression
omopthlem1.1 𝐴 ∈ ω
omopthlem1.2 𝐶 ∈ ω
Assertion
Ref Expression
omopthlem1 (𝐴𝐶 → ((𝐴 ·𝑜 𝐴) +𝑜 (𝐴 ·𝑜 2𝑜)) ∈ (𝐶 ·𝑜 𝐶))

Proof of Theorem omopthlem1
StepHypRef Expression
1 omopthlem1.1 . . . . 5 𝐴 ∈ ω
2 peano2 6978 . . . . 5 (𝐴 ∈ ω → suc 𝐴 ∈ ω)
31, 2ax-mp 5 . . . 4 suc 𝐴 ∈ ω
4 omopthlem1.2 . . . 4 𝐶 ∈ ω
5 nnmwordi 7602 . . . 4 ((suc 𝐴 ∈ ω ∧ 𝐶 ∈ ω ∧ suc 𝐴 ∈ ω) → (suc 𝐴𝐶 → (suc 𝐴 ·𝑜 suc 𝐴) ⊆ (suc 𝐴 ·𝑜 𝐶)))
63, 4, 3, 5mp3an 1416 . . 3 (suc 𝐴𝐶 → (suc 𝐴 ·𝑜 suc 𝐴) ⊆ (suc 𝐴 ·𝑜 𝐶))
7 nnmwordri 7603 . . . 4 ((suc 𝐴 ∈ ω ∧ 𝐶 ∈ ω ∧ 𝐶 ∈ ω) → (suc 𝐴𝐶 → (suc 𝐴 ·𝑜 𝐶) ⊆ (𝐶 ·𝑜 𝐶)))
83, 4, 4, 7mp3an 1416 . . 3 (suc 𝐴𝐶 → (suc 𝐴 ·𝑜 𝐶) ⊆ (𝐶 ·𝑜 𝐶))
96, 8sstrd 3578 . 2 (suc 𝐴𝐶 → (suc 𝐴 ·𝑜 suc 𝐴) ⊆ (𝐶 ·𝑜 𝐶))
101nnoni 6964 . . 3 𝐴 ∈ On
114nnoni 6964 . . 3 𝐶 ∈ On
1210, 11onsucssi 6933 . 2 (𝐴𝐶 ↔ suc 𝐴𝐶)
131, 1nnmcli 7582 . . . . . 6 (𝐴 ·𝑜 𝐴) ∈ ω
14 2onn 7607 . . . . . . 7 2𝑜 ∈ ω
151, 14nnmcli 7582 . . . . . 6 (𝐴 ·𝑜 2𝑜) ∈ ω
1613, 15nnacli 7581 . . . . 5 ((𝐴 ·𝑜 𝐴) +𝑜 (𝐴 ·𝑜 2𝑜)) ∈ ω
1716nnoni 6964 . . . 4 ((𝐴 ·𝑜 𝐴) +𝑜 (𝐴 ·𝑜 2𝑜)) ∈ On
184, 4nnmcli 7582 . . . . 5 (𝐶 ·𝑜 𝐶) ∈ ω
1918nnoni 6964 . . . 4 (𝐶 ·𝑜 𝐶) ∈ On
2017, 19onsucssi 6933 . . 3 (((𝐴 ·𝑜 𝐴) +𝑜 (𝐴 ·𝑜 2𝑜)) ∈ (𝐶 ·𝑜 𝐶) ↔ suc ((𝐴 ·𝑜 𝐴) +𝑜 (𝐴 ·𝑜 2𝑜)) ⊆ (𝐶 ·𝑜 𝐶))
213, 1nnmcli 7582 . . . . . 6 (suc 𝐴 ·𝑜 𝐴) ∈ ω
22 nnasuc 7573 . . . . . 6 (((suc 𝐴 ·𝑜 𝐴) ∈ ω ∧ 𝐴 ∈ ω) → ((suc 𝐴 ·𝑜 𝐴) +𝑜 suc 𝐴) = suc ((suc 𝐴 ·𝑜 𝐴) +𝑜 𝐴))
2321, 1, 22mp2an 704 . . . . 5 ((suc 𝐴 ·𝑜 𝐴) +𝑜 suc 𝐴) = suc ((suc 𝐴 ·𝑜 𝐴) +𝑜 𝐴)
24 nnmsuc 7574 . . . . . 6 ((suc 𝐴 ∈ ω ∧ 𝐴 ∈ ω) → (suc 𝐴 ·𝑜 suc 𝐴) = ((suc 𝐴 ·𝑜 𝐴) +𝑜 suc 𝐴))
253, 1, 24mp2an 704 . . . . 5 (suc 𝐴 ·𝑜 suc 𝐴) = ((suc 𝐴 ·𝑜 𝐴) +𝑜 suc 𝐴)
26 nnaass 7589 . . . . . . . 8 (((𝐴 ·𝑜 𝐴) ∈ ω ∧ 𝐴 ∈ ω ∧ 𝐴 ∈ ω) → (((𝐴 ·𝑜 𝐴) +𝑜 𝐴) +𝑜 𝐴) = ((𝐴 ·𝑜 𝐴) +𝑜 (𝐴 +𝑜 𝐴)))
2713, 1, 1, 26mp3an 1416 . . . . . . 7 (((𝐴 ·𝑜 𝐴) +𝑜 𝐴) +𝑜 𝐴) = ((𝐴 ·𝑜 𝐴) +𝑜 (𝐴 +𝑜 𝐴))
28 nnmcom 7593 . . . . . . . . . 10 ((suc 𝐴 ∈ ω ∧ 𝐴 ∈ ω) → (suc 𝐴 ·𝑜 𝐴) = (𝐴 ·𝑜 suc 𝐴))
293, 1, 28mp2an 704 . . . . . . . . 9 (suc 𝐴 ·𝑜 𝐴) = (𝐴 ·𝑜 suc 𝐴)
30 nnmsuc 7574 . . . . . . . . . 10 ((𝐴 ∈ ω ∧ 𝐴 ∈ ω) → (𝐴 ·𝑜 suc 𝐴) = ((𝐴 ·𝑜 𝐴) +𝑜 𝐴))
311, 1, 30mp2an 704 . . . . . . . . 9 (𝐴 ·𝑜 suc 𝐴) = ((𝐴 ·𝑜 𝐴) +𝑜 𝐴)
3229, 31eqtri 2632 . . . . . . . 8 (suc 𝐴 ·𝑜 𝐴) = ((𝐴 ·𝑜 𝐴) +𝑜 𝐴)
3332oveq1i 6559 . . . . . . 7 ((suc 𝐴 ·𝑜 𝐴) +𝑜 𝐴) = (((𝐴 ·𝑜 𝐴) +𝑜 𝐴) +𝑜 𝐴)
34 nnm2 7616 . . . . . . . . 9 (𝐴 ∈ ω → (𝐴 ·𝑜 2𝑜) = (𝐴 +𝑜 𝐴))
351, 34ax-mp 5 . . . . . . . 8 (𝐴 ·𝑜 2𝑜) = (𝐴 +𝑜 𝐴)
3635oveq2i 6560 . . . . . . 7 ((𝐴 ·𝑜 𝐴) +𝑜 (𝐴 ·𝑜 2𝑜)) = ((𝐴 ·𝑜 𝐴) +𝑜 (𝐴 +𝑜 𝐴))
3727, 33, 363eqtr4ri 2643 . . . . . 6 ((𝐴 ·𝑜 𝐴) +𝑜 (𝐴 ·𝑜 2𝑜)) = ((suc 𝐴 ·𝑜 𝐴) +𝑜 𝐴)
38 suceq 5707 . . . . . 6 (((𝐴 ·𝑜 𝐴) +𝑜 (𝐴 ·𝑜 2𝑜)) = ((suc 𝐴 ·𝑜 𝐴) +𝑜 𝐴) → suc ((𝐴 ·𝑜 𝐴) +𝑜 (𝐴 ·𝑜 2𝑜)) = suc ((suc 𝐴 ·𝑜 𝐴) +𝑜 𝐴))
3937, 38ax-mp 5 . . . . 5 suc ((𝐴 ·𝑜 𝐴) +𝑜 (𝐴 ·𝑜 2𝑜)) = suc ((suc 𝐴 ·𝑜 𝐴) +𝑜 𝐴)
4023, 25, 393eqtr4ri 2643 . . . 4 suc ((𝐴 ·𝑜 𝐴) +𝑜 (𝐴 ·𝑜 2𝑜)) = (suc 𝐴 ·𝑜 suc 𝐴)
4140sseq1i 3592 . . 3 (suc ((𝐴 ·𝑜 𝐴) +𝑜 (𝐴 ·𝑜 2𝑜)) ⊆ (𝐶 ·𝑜 𝐶) ↔ (suc 𝐴 ·𝑜 suc 𝐴) ⊆ (𝐶 ·𝑜 𝐶))
4220, 41bitri 263 . 2 (((𝐴 ·𝑜 𝐴) +𝑜 (𝐴 ·𝑜 2𝑜)) ∈ (𝐶 ·𝑜 𝐶) ↔ (suc 𝐴 ·𝑜 suc 𝐴) ⊆ (𝐶 ·𝑜 𝐶))
439, 12, 423imtr4i 280 1 (𝐴𝐶 → ((𝐴 ·𝑜 𝐴) +𝑜 (𝐴 ·𝑜 2𝑜)) ∈ (𝐶 ·𝑜 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1475  wcel 1977  wss 3540  suc csuc 5642  (class class class)co 6549  ωcom 6957  2𝑜c2o 7441   +𝑜 coa 7444   ·𝑜 comu 7445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-omul 7452
This theorem is referenced by:  omopthlem2  7623
  Copyright terms: Public domain W3C validator