Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > onsucssi | Structured version Visualization version GIF version |
Description: A set belongs to an ordinal number iff its successor is a subset of the ordinal number. Exercise 8 of [TakeutiZaring] p. 42 and its converse. (Contributed by NM, 16-Sep-1995.) |
Ref | Expression |
---|---|
onssi.1 | ⊢ 𝐴 ∈ On |
onsucssi.2 | ⊢ 𝐵 ∈ On |
Ref | Expression |
---|---|
onsucssi | ⊢ (𝐴 ∈ 𝐵 ↔ suc 𝐴 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | onssi.1 | . 2 ⊢ 𝐴 ∈ On | |
2 | onsucssi.2 | . . 3 ⊢ 𝐵 ∈ On | |
3 | 2 | onordi 5749 | . 2 ⊢ Ord 𝐵 |
4 | ordelsuc 6912 | . 2 ⊢ ((𝐴 ∈ On ∧ Ord 𝐵) → (𝐴 ∈ 𝐵 ↔ suc 𝐴 ⊆ 𝐵)) | |
5 | 1, 3, 4 | mp2an 704 | 1 ⊢ (𝐴 ∈ 𝐵 ↔ suc 𝐴 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 195 ∈ wcel 1977 ⊆ wss 3540 Ord word 5639 Oncon0 5640 suc csuc 5642 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-tr 4681 df-eprel 4949 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-ord 5643 df-on 5644 df-suc 5646 |
This theorem is referenced by: omopthlem1 7622 rankval4 8613 rankc1 8616 rankc2 8617 rankxplim 8625 rankxplim3 8627 onsucsuccmpi 31612 |
Copyright terms: Public domain | W3C validator |