Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  odmod Structured version   Visualization version   GIF version

Theorem odmod 17788
 Description: Reduce the argument of a group multiple by modding out the order of the element. (Contributed by Mario Carneiro, 14-Jan-2015.) (Revised by Mario Carneiro, 6-Sep-2015.)
Hypotheses
Ref Expression
odcl.1 𝑋 = (Base‘𝐺)
odcl.2 𝑂 = (od‘𝐺)
odid.3 · = (.g𝐺)
odid.4 0 = (0g𝐺)
Assertion
Ref Expression
odmod (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑁 mod (𝑂𝐴)) · 𝐴) = (𝑁 · 𝐴))

Proof of Theorem odmod
StepHypRef Expression
1 simpl3 1059 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → 𝑁 ∈ ℤ)
21zred 11358 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → 𝑁 ∈ ℝ)
3 simpr 476 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → (𝑂𝐴) ∈ ℕ)
43nnrpd 11746 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → (𝑂𝐴) ∈ ℝ+)
5 modval 12532 . . . 4 ((𝑁 ∈ ℝ ∧ (𝑂𝐴) ∈ ℝ+) → (𝑁 mod (𝑂𝐴)) = (𝑁 − ((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴))))))
62, 4, 5syl2anc 691 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → (𝑁 mod (𝑂𝐴)) = (𝑁 − ((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴))))))
76oveq1d 6564 . 2 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑁 mod (𝑂𝐴)) · 𝐴) = ((𝑁 − ((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴))))) · 𝐴))
8 simpl1 1057 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → 𝐺 ∈ Grp)
93nnzd 11357 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → (𝑂𝐴) ∈ ℤ)
102, 3nndivred 10946 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → (𝑁 / (𝑂𝐴)) ∈ ℝ)
1110flcld 12461 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → (⌊‘(𝑁 / (𝑂𝐴))) ∈ ℤ)
129, 11zmulcld 11364 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) ∈ ℤ)
13 simpl2 1058 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → 𝐴𝑋)
14 odcl.1 . . . 4 𝑋 = (Base‘𝐺)
15 odid.3 . . . 4 · = (.g𝐺)
16 eqid 2610 . . . 4 (-g𝐺) = (-g𝐺)
1714, 15, 16mulgsubdir 17405 . . 3 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ ((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) ∈ ℤ ∧ 𝐴𝑋)) → ((𝑁 − ((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴))))) · 𝐴) = ((𝑁 · 𝐴)(-g𝐺)(((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) · 𝐴)))
188, 1, 12, 13, 17syl13anc 1320 . 2 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑁 − ((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴))))) · 𝐴) = ((𝑁 · 𝐴)(-g𝐺)(((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) · 𝐴)))
19 nncn 10905 . . . . . . . 8 ((𝑂𝐴) ∈ ℕ → (𝑂𝐴) ∈ ℂ)
20 zcn 11259 . . . . . . . 8 ((⌊‘(𝑁 / (𝑂𝐴))) ∈ ℤ → (⌊‘(𝑁 / (𝑂𝐴))) ∈ ℂ)
21 mulcom 9901 . . . . . . . 8 (((𝑂𝐴) ∈ ℂ ∧ (⌊‘(𝑁 / (𝑂𝐴))) ∈ ℂ) → ((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) = ((⌊‘(𝑁 / (𝑂𝐴))) · (𝑂𝐴)))
2219, 20, 21syl2an 493 . . . . . . 7 (((𝑂𝐴) ∈ ℕ ∧ (⌊‘(𝑁 / (𝑂𝐴))) ∈ ℤ) → ((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) = ((⌊‘(𝑁 / (𝑂𝐴))) · (𝑂𝐴)))
233, 11, 22syl2anc 691 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) = ((⌊‘(𝑁 / (𝑂𝐴))) · (𝑂𝐴)))
2423oveq1d 6564 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → (((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) · 𝐴) = (((⌊‘(𝑁 / (𝑂𝐴))) · (𝑂𝐴)) · 𝐴))
2514, 15mulgass 17402 . . . . . 6 ((𝐺 ∈ Grp ∧ ((⌊‘(𝑁 / (𝑂𝐴))) ∈ ℤ ∧ (𝑂𝐴) ∈ ℤ ∧ 𝐴𝑋)) → (((⌊‘(𝑁 / (𝑂𝐴))) · (𝑂𝐴)) · 𝐴) = ((⌊‘(𝑁 / (𝑂𝐴))) · ((𝑂𝐴) · 𝐴)))
268, 11, 9, 13, 25syl13anc 1320 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → (((⌊‘(𝑁 / (𝑂𝐴))) · (𝑂𝐴)) · 𝐴) = ((⌊‘(𝑁 / (𝑂𝐴))) · ((𝑂𝐴) · 𝐴)))
27 odcl.2 . . . . . . . . 9 𝑂 = (od‘𝐺)
28 odid.4 . . . . . . . . 9 0 = (0g𝐺)
2914, 27, 15, 28odid 17780 . . . . . . . 8 (𝐴𝑋 → ((𝑂𝐴) · 𝐴) = 0 )
3013, 29syl 17 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑂𝐴) · 𝐴) = 0 )
3130oveq2d 6565 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → ((⌊‘(𝑁 / (𝑂𝐴))) · ((𝑂𝐴) · 𝐴)) = ((⌊‘(𝑁 / (𝑂𝐴))) · 0 ))
3214, 15, 28mulgz 17391 . . . . . . 7 ((𝐺 ∈ Grp ∧ (⌊‘(𝑁 / (𝑂𝐴))) ∈ ℤ) → ((⌊‘(𝑁 / (𝑂𝐴))) · 0 ) = 0 )
338, 11, 32syl2anc 691 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → ((⌊‘(𝑁 / (𝑂𝐴))) · 0 ) = 0 )
3431, 33eqtrd 2644 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → ((⌊‘(𝑁 / (𝑂𝐴))) · ((𝑂𝐴) · 𝐴)) = 0 )
3524, 26, 343eqtrd 2648 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → (((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) · 𝐴) = 0 )
3635oveq2d 6565 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑁 · 𝐴)(-g𝐺)(((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) · 𝐴)) = ((𝑁 · 𝐴)(-g𝐺) 0 ))
3714, 15mulgcl 17382 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝐴𝑋) → (𝑁 · 𝐴) ∈ 𝑋)
388, 1, 13, 37syl3anc 1318 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → (𝑁 · 𝐴) ∈ 𝑋)
3914, 28, 16grpsubid1 17323 . . . 4 ((𝐺 ∈ Grp ∧ (𝑁 · 𝐴) ∈ 𝑋) → ((𝑁 · 𝐴)(-g𝐺) 0 ) = (𝑁 · 𝐴))
408, 38, 39syl2anc 691 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑁 · 𝐴)(-g𝐺) 0 ) = (𝑁 · 𝐴))
4136, 40eqtrd 2644 . 2 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑁 · 𝐴)(-g𝐺)(((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) · 𝐴)) = (𝑁 · 𝐴))
427, 18, 413eqtrd 2648 1 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑁 mod (𝑂𝐴)) · 𝐴) = (𝑁 · 𝐴))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  ‘cfv 5804  (class class class)co 6549  ℂcc 9813  ℝcr 9814   · cmul 9820   − cmin 10145   / cdiv 10563  ℕcn 10897  ℤcz 11254  ℝ+crp 11708  ⌊cfl 12453   mod cmo 12530  Basecbs 15695  0gc0g 15923  Grpcgrp 17245  -gcsg 17247  .gcmg 17363  odcod 17767 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fl 12455  df-mod 12531  df-seq 12664  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-minusg 17249  df-sbg 17250  df-mulg 17364  df-od 17771 This theorem is referenced by:  oddvds  17789  odf1o2  17811
 Copyright terms: Public domain W3C validator