MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odf1o2 Structured version   Visualization version   GIF version

Theorem odf1o2 17811
Description: An element with nonzero order has as many multiples as its order. (Contributed by Stefan O'Rear, 6-Sep-2015.)
Hypotheses
Ref Expression
odf1o1.x 𝑋 = (Base‘𝐺)
odf1o1.t · = (.g𝐺)
odf1o1.o 𝑂 = (od‘𝐺)
odf1o1.k 𝐾 = (mrCls‘(SubGrp‘𝐺))
Assertion
Ref Expression
odf1o2 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)):(0..^(𝑂𝐴))–1-1-onto→(𝐾‘{𝐴}))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐺   𝑥,𝐾   𝑥,𝑂   𝑥, ·   𝑥,𝑋

Proof of Theorem odf1o2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simpl1 1057 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑥 ∈ (0..^(𝑂𝐴))) → 𝐺 ∈ Grp)
2 elfzoelz 12339 . . . . . . . 8 (𝑥 ∈ (0..^(𝑂𝐴)) → 𝑥 ∈ ℤ)
32adantl 481 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑥 ∈ (0..^(𝑂𝐴))) → 𝑥 ∈ ℤ)
4 simpl2 1058 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑥 ∈ (0..^(𝑂𝐴))) → 𝐴𝑋)
5 odf1o1.x . . . . . . . 8 𝑋 = (Base‘𝐺)
6 odf1o1.t . . . . . . . 8 · = (.g𝐺)
75, 6mulgcl 17382 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑥 ∈ ℤ ∧ 𝐴𝑋) → (𝑥 · 𝐴) ∈ 𝑋)
81, 3, 4, 7syl3anc 1318 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑥 ∈ (0..^(𝑂𝐴))) → (𝑥 · 𝐴) ∈ 𝑋)
98ex 449 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → (𝑥 ∈ (0..^(𝑂𝐴)) → (𝑥 · 𝐴) ∈ 𝑋))
10 simpl3 1059 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ (𝑥 ∈ (0..^(𝑂𝐴)) ∧ 𝑦 ∈ (0..^(𝑂𝐴)))) → (𝑂𝐴) ∈ ℕ)
1110nncnd 10913 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ (𝑥 ∈ (0..^(𝑂𝐴)) ∧ 𝑦 ∈ (0..^(𝑂𝐴)))) → (𝑂𝐴) ∈ ℂ)
1211subid1d 10260 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ (𝑥 ∈ (0..^(𝑂𝐴)) ∧ 𝑦 ∈ (0..^(𝑂𝐴)))) → ((𝑂𝐴) − 0) = (𝑂𝐴))
1312breq1d 4593 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ (𝑥 ∈ (0..^(𝑂𝐴)) ∧ 𝑦 ∈ (0..^(𝑂𝐴)))) → (((𝑂𝐴) − 0) ∥ (𝑥𝑦) ↔ (𝑂𝐴) ∥ (𝑥𝑦)))
14 fzocongeq 14884 . . . . . . . 8 ((𝑥 ∈ (0..^(𝑂𝐴)) ∧ 𝑦 ∈ (0..^(𝑂𝐴))) → (((𝑂𝐴) − 0) ∥ (𝑥𝑦) ↔ 𝑥 = 𝑦))
1514adantl 481 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ (𝑥 ∈ (0..^(𝑂𝐴)) ∧ 𝑦 ∈ (0..^(𝑂𝐴)))) → (((𝑂𝐴) − 0) ∥ (𝑥𝑦) ↔ 𝑥 = 𝑦))
16 simpl1 1057 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ (𝑥 ∈ (0..^(𝑂𝐴)) ∧ 𝑦 ∈ (0..^(𝑂𝐴)))) → 𝐺 ∈ Grp)
17 simpl2 1058 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ (𝑥 ∈ (0..^(𝑂𝐴)) ∧ 𝑦 ∈ (0..^(𝑂𝐴)))) → 𝐴𝑋)
182ad2antrl 760 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ (𝑥 ∈ (0..^(𝑂𝐴)) ∧ 𝑦 ∈ (0..^(𝑂𝐴)))) → 𝑥 ∈ ℤ)
19 elfzoelz 12339 . . . . . . . . 9 (𝑦 ∈ (0..^(𝑂𝐴)) → 𝑦 ∈ ℤ)
2019ad2antll 761 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ (𝑥 ∈ (0..^(𝑂𝐴)) ∧ 𝑦 ∈ (0..^(𝑂𝐴)))) → 𝑦 ∈ ℤ)
21 odf1o1.o . . . . . . . . 9 𝑂 = (od‘𝐺)
22 eqid 2610 . . . . . . . . 9 (0g𝐺) = (0g𝐺)
235, 21, 6, 22odcong 17791 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑂𝐴) ∥ (𝑥𝑦) ↔ (𝑥 · 𝐴) = (𝑦 · 𝐴)))
2416, 17, 18, 20, 23syl112anc 1322 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ (𝑥 ∈ (0..^(𝑂𝐴)) ∧ 𝑦 ∈ (0..^(𝑂𝐴)))) → ((𝑂𝐴) ∥ (𝑥𝑦) ↔ (𝑥 · 𝐴) = (𝑦 · 𝐴)))
2513, 15, 243bitr3rd 298 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ (𝑥 ∈ (0..^(𝑂𝐴)) ∧ 𝑦 ∈ (0..^(𝑂𝐴)))) → ((𝑥 · 𝐴) = (𝑦 · 𝐴) ↔ 𝑥 = 𝑦))
2625ex 449 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → ((𝑥 ∈ (0..^(𝑂𝐴)) ∧ 𝑦 ∈ (0..^(𝑂𝐴))) → ((𝑥 · 𝐴) = (𝑦 · 𝐴) ↔ 𝑥 = 𝑦)))
279, 26dom2lem 7881 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)):(0..^(𝑂𝐴))–1-1𝑋)
28 f1fn 6015 . . . 4 ((𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)):(0..^(𝑂𝐴))–1-1𝑋 → (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)) Fn (0..^(𝑂𝐴)))
2927, 28syl 17 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)) Fn (0..^(𝑂𝐴)))
30 resss 5342 . . . . . . 7 ((𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) ↾ (0..^(𝑂𝐴))) ⊆ (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴))
312ssriv 3572 . . . . . . . 8 (0..^(𝑂𝐴)) ⊆ ℤ
32 resmpt 5369 . . . . . . . 8 ((0..^(𝑂𝐴)) ⊆ ℤ → ((𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) ↾ (0..^(𝑂𝐴))) = (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)))
3331, 32ax-mp 5 . . . . . . 7 ((𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) ↾ (0..^(𝑂𝐴))) = (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴))
34 oveq1 6556 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥 · 𝐴) = (𝑦 · 𝐴))
3534cbvmptv 4678 . . . . . . 7 (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) = (𝑦 ∈ ℤ ↦ (𝑦 · 𝐴))
3630, 33, 353sstr3i 3606 . . . . . 6 (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)) ⊆ (𝑦 ∈ ℤ ↦ (𝑦 · 𝐴))
37 rnss 5275 . . . . . 6 ((𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)) ⊆ (𝑦 ∈ ℤ ↦ (𝑦 · 𝐴)) → ran (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)) ⊆ ran (𝑦 ∈ ℤ ↦ (𝑦 · 𝐴)))
3836, 37mp1i 13 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → ran (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)) ⊆ ran (𝑦 ∈ ℤ ↦ (𝑦 · 𝐴)))
39 simpr 476 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑦 ∈ ℤ) → 𝑦 ∈ ℤ)
40 simpl3 1059 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑦 ∈ ℤ) → (𝑂𝐴) ∈ ℕ)
41 zmodfzo 12555 . . . . . . . . . 10 ((𝑦 ∈ ℤ ∧ (𝑂𝐴) ∈ ℕ) → (𝑦 mod (𝑂𝐴)) ∈ (0..^(𝑂𝐴)))
4239, 40, 41syl2anc 691 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑦 ∈ ℤ) → (𝑦 mod (𝑂𝐴)) ∈ (0..^(𝑂𝐴)))
435, 21, 6, 22odmod 17788 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑦 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑦 mod (𝑂𝐴)) · 𝐴) = (𝑦 · 𝐴))
44433an1rs 1271 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑦 ∈ ℤ) → ((𝑦 mod (𝑂𝐴)) · 𝐴) = (𝑦 · 𝐴))
4544eqcomd 2616 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑦 ∈ ℤ) → (𝑦 · 𝐴) = ((𝑦 mod (𝑂𝐴)) · 𝐴))
46 oveq1 6556 . . . . . . . . . . 11 (𝑥 = (𝑦 mod (𝑂𝐴)) → (𝑥 · 𝐴) = ((𝑦 mod (𝑂𝐴)) · 𝐴))
4746eqeq2d 2620 . . . . . . . . . 10 (𝑥 = (𝑦 mod (𝑂𝐴)) → ((𝑦 · 𝐴) = (𝑥 · 𝐴) ↔ (𝑦 · 𝐴) = ((𝑦 mod (𝑂𝐴)) · 𝐴)))
4847rspcev 3282 . . . . . . . . 9 (((𝑦 mod (𝑂𝐴)) ∈ (0..^(𝑂𝐴)) ∧ (𝑦 · 𝐴) = ((𝑦 mod (𝑂𝐴)) · 𝐴)) → ∃𝑥 ∈ (0..^(𝑂𝐴))(𝑦 · 𝐴) = (𝑥 · 𝐴))
4942, 45, 48syl2anc 691 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑦 ∈ ℤ) → ∃𝑥 ∈ (0..^(𝑂𝐴))(𝑦 · 𝐴) = (𝑥 · 𝐴))
50 ovex 6577 . . . . . . . . 9 (𝑦 · 𝐴) ∈ V
51 eqid 2610 . . . . . . . . . 10 (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)) = (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴))
5251elrnmpt 5293 . . . . . . . . 9 ((𝑦 · 𝐴) ∈ V → ((𝑦 · 𝐴) ∈ ran (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)) ↔ ∃𝑥 ∈ (0..^(𝑂𝐴))(𝑦 · 𝐴) = (𝑥 · 𝐴)))
5350, 52ax-mp 5 . . . . . . . 8 ((𝑦 · 𝐴) ∈ ran (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)) ↔ ∃𝑥 ∈ (0..^(𝑂𝐴))(𝑦 · 𝐴) = (𝑥 · 𝐴))
5449, 53sylibr 223 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑦 ∈ ℤ) → (𝑦 · 𝐴) ∈ ran (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)))
55 eqid 2610 . . . . . . 7 (𝑦 ∈ ℤ ↦ (𝑦 · 𝐴)) = (𝑦 ∈ ℤ ↦ (𝑦 · 𝐴))
5654, 55fmptd 6292 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → (𝑦 ∈ ℤ ↦ (𝑦 · 𝐴)):ℤ⟶ran (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)))
57 frn 5966 . . . . . 6 ((𝑦 ∈ ℤ ↦ (𝑦 · 𝐴)):ℤ⟶ran (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)) → ran (𝑦 ∈ ℤ ↦ (𝑦 · 𝐴)) ⊆ ran (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)))
5856, 57syl 17 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → ran (𝑦 ∈ ℤ ↦ (𝑦 · 𝐴)) ⊆ ran (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)))
5938, 58eqssd 3585 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → ran (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)) = ran (𝑦 ∈ ℤ ↦ (𝑦 · 𝐴)))
60 odf1o1.k . . . . . 6 𝐾 = (mrCls‘(SubGrp‘𝐺))
615, 6, 55, 60cycsubg2 17454 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝐾‘{𝐴}) = ran (𝑦 ∈ ℤ ↦ (𝑦 · 𝐴)))
62613adant3 1074 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → (𝐾‘{𝐴}) = ran (𝑦 ∈ ℤ ↦ (𝑦 · 𝐴)))
6359, 62eqtr4d 2647 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → ran (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)) = (𝐾‘{𝐴}))
64 df-fo 5810 . . 3 ((𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)):(0..^(𝑂𝐴))–onto→(𝐾‘{𝐴}) ↔ ((𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)) Fn (0..^(𝑂𝐴)) ∧ ran (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)) = (𝐾‘{𝐴})))
6529, 63, 64sylanbrc 695 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)):(0..^(𝑂𝐴))–onto→(𝐾‘{𝐴}))
66 df-f1 5809 . . . 4 ((𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)):(0..^(𝑂𝐴))–1-1𝑋 ↔ ((𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)):(0..^(𝑂𝐴))⟶𝑋 ∧ Fun (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴))))
6766simprbi 479 . . 3 ((𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)):(0..^(𝑂𝐴))–1-1𝑋 → Fun (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)))
6827, 67syl 17 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → Fun (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)))
69 dff1o3 6056 . 2 ((𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)):(0..^(𝑂𝐴))–1-1-onto→(𝐾‘{𝐴}) ↔ ((𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)):(0..^(𝑂𝐴))–onto→(𝐾‘{𝐴}) ∧ Fun (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴))))
7065, 68, 69sylanbrc 695 1 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)):(0..^(𝑂𝐴))–1-1-onto→(𝐾‘{𝐴}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wrex 2897  Vcvv 3173  wss 3540  {csn 4125   class class class wbr 4583  cmpt 4643  ccnv 5037  ran crn 5039  cres 5040  Fun wfun 5798   Fn wfn 5799  wf 5800  1-1wf1 5801  ontowfo 5802  1-1-ontowf1o 5803  cfv 5804  (class class class)co 6549  0cc0 9815  cmin 10145  cn 10897  cz 11254  ..^cfzo 12334   mod cmo 12530  cdvds 14821  Basecbs 15695  0gc0g 15923  mrClscmrc 16066  Grpcgrp 17245  .gcmg 17363  SubGrpcsubg 17411  odcod 17767
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-dvds 14822  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-0g 15925  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-grp 17248  df-minusg 17249  df-sbg 17250  df-mulg 17364  df-subg 17414  df-od 17771
This theorem is referenced by:  odhash2  17813  odngen  17815
  Copyright terms: Public domain W3C validator