Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oddcomabszz Structured version   Visualization version   GIF version

Theorem oddcomabszz 36527
Description: An odd function which takes nonnegative values on nonnegative arguments commutes with abs. (Contributed by Stefan O'Rear, 26-Sep-2014.)
Hypotheses
Ref Expression
oddcomabszz.1 ((𝜑𝑥 ∈ ℤ) → 𝐴 ∈ ℝ)
oddcomabszz.2 ((𝜑𝑥 ∈ ℤ ∧ 0 ≤ 𝑥) → 0 ≤ 𝐴)
oddcomabszz.3 ((𝜑𝑦 ∈ ℤ) → 𝐶 = -𝐵)
oddcomabszz.4 (𝑥 = 𝑦𝐴 = 𝐵)
oddcomabszz.5 (𝑥 = -𝑦𝐴 = 𝐶)
oddcomabszz.6 (𝑥 = 𝐷𝐴 = 𝐸)
oddcomabszz.7 (𝑥 = (abs‘𝐷) → 𝐴 = 𝐹)
Assertion
Ref Expression
oddcomabszz ((𝜑𝐷 ∈ ℤ) → (abs‘𝐸) = 𝐹)
Distinct variable groups:   𝑥,𝐵   𝑥,𝐶   𝑥,𝐷,𝑦   𝑥,𝐸   𝑥,𝐹   𝑦,𝐴   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑦)   𝐶(𝑦)   𝐸(𝑦)   𝐹(𝑦)

Proof of Theorem oddcomabszz
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 eleq1 2676 . . . . . 6 (𝑎 = 𝐷 → (𝑎 ∈ ℤ ↔ 𝐷 ∈ ℤ))
21anbi2d 736 . . . . 5 (𝑎 = 𝐷 → ((𝜑𝑎 ∈ ℤ) ↔ (𝜑𝐷 ∈ ℤ)))
3 csbeq1 3502 . . . . . . 7 (𝑎 = 𝐷𝑎 / 𝑥𝐴 = 𝐷 / 𝑥𝐴)
43fveq2d 6107 . . . . . 6 (𝑎 = 𝐷 → (abs‘𝑎 / 𝑥𝐴) = (abs‘𝐷 / 𝑥𝐴))
5 fveq2 6103 . . . . . . 7 (𝑎 = 𝐷 → (abs‘𝑎) = (abs‘𝐷))
65csbeq1d 3506 . . . . . 6 (𝑎 = 𝐷(abs‘𝑎) / 𝑥𝐴 = (abs‘𝐷) / 𝑥𝐴)
74, 6eqeq12d 2625 . . . . 5 (𝑎 = 𝐷 → ((abs‘𝑎 / 𝑥𝐴) = (abs‘𝑎) / 𝑥𝐴 ↔ (abs‘𝐷 / 𝑥𝐴) = (abs‘𝐷) / 𝑥𝐴))
82, 7imbi12d 333 . . . 4 (𝑎 = 𝐷 → (((𝜑𝑎 ∈ ℤ) → (abs‘𝑎 / 𝑥𝐴) = (abs‘𝑎) / 𝑥𝐴) ↔ ((𝜑𝐷 ∈ ℤ) → (abs‘𝐷 / 𝑥𝐴) = (abs‘𝐷) / 𝑥𝐴)))
9 nfv 1830 . . . . . . . . . 10 𝑥(𝜑𝑎 ∈ ℤ)
10 nfcsb1v 3515 . . . . . . . . . . 11 𝑥𝑎 / 𝑥𝐴
1110nfel1 2765 . . . . . . . . . 10 𝑥𝑎 / 𝑥𝐴 ∈ ℝ
129, 11nfim 1813 . . . . . . . . 9 𝑥((𝜑𝑎 ∈ ℤ) → 𝑎 / 𝑥𝐴 ∈ ℝ)
13 eleq1 2676 . . . . . . . . . . 11 (𝑥 = 𝑎 → (𝑥 ∈ ℤ ↔ 𝑎 ∈ ℤ))
1413anbi2d 736 . . . . . . . . . 10 (𝑥 = 𝑎 → ((𝜑𝑥 ∈ ℤ) ↔ (𝜑𝑎 ∈ ℤ)))
15 csbeq1a 3508 . . . . . . . . . . 11 (𝑥 = 𝑎𝐴 = 𝑎 / 𝑥𝐴)
1615eleq1d 2672 . . . . . . . . . 10 (𝑥 = 𝑎 → (𝐴 ∈ ℝ ↔ 𝑎 / 𝑥𝐴 ∈ ℝ))
1714, 16imbi12d 333 . . . . . . . . 9 (𝑥 = 𝑎 → (((𝜑𝑥 ∈ ℤ) → 𝐴 ∈ ℝ) ↔ ((𝜑𝑎 ∈ ℤ) → 𝑎 / 𝑥𝐴 ∈ ℝ)))
18 oddcomabszz.1 . . . . . . . . 9 ((𝜑𝑥 ∈ ℤ) → 𝐴 ∈ ℝ)
1912, 17, 18chvar 2250 . . . . . . . 8 ((𝜑𝑎 ∈ ℤ) → 𝑎 / 𝑥𝐴 ∈ ℝ)
2019adantr 480 . . . . . . 7 (((𝜑𝑎 ∈ ℤ) ∧ 0 ≤ 𝑎) → 𝑎 / 𝑥𝐴 ∈ ℝ)
21 nfv 1830 . . . . . . . . . 10 𝑥(𝜑𝑎 ∈ ℤ ∧ 0 ≤ 𝑎)
22 nfcv 2751 . . . . . . . . . . 11 𝑥0
23 nfcv 2751 . . . . . . . . . . 11 𝑥
2422, 23, 10nfbr 4629 . . . . . . . . . 10 𝑥0 ≤ 𝑎 / 𝑥𝐴
2521, 24nfim 1813 . . . . . . . . 9 𝑥((𝜑𝑎 ∈ ℤ ∧ 0 ≤ 𝑎) → 0 ≤ 𝑎 / 𝑥𝐴)
26 breq2 4587 . . . . . . . . . . 11 (𝑥 = 𝑎 → (0 ≤ 𝑥 ↔ 0 ≤ 𝑎))
2713, 263anbi23d 1394 . . . . . . . . . 10 (𝑥 = 𝑎 → ((𝜑𝑥 ∈ ℤ ∧ 0 ≤ 𝑥) ↔ (𝜑𝑎 ∈ ℤ ∧ 0 ≤ 𝑎)))
2815breq2d 4595 . . . . . . . . . 10 (𝑥 = 𝑎 → (0 ≤ 𝐴 ↔ 0 ≤ 𝑎 / 𝑥𝐴))
2927, 28imbi12d 333 . . . . . . . . 9 (𝑥 = 𝑎 → (((𝜑𝑥 ∈ ℤ ∧ 0 ≤ 𝑥) → 0 ≤ 𝐴) ↔ ((𝜑𝑎 ∈ ℤ ∧ 0 ≤ 𝑎) → 0 ≤ 𝑎 / 𝑥𝐴)))
30 oddcomabszz.2 . . . . . . . . 9 ((𝜑𝑥 ∈ ℤ ∧ 0 ≤ 𝑥) → 0 ≤ 𝐴)
3125, 29, 30chvar 2250 . . . . . . . 8 ((𝜑𝑎 ∈ ℤ ∧ 0 ≤ 𝑎) → 0 ≤ 𝑎 / 𝑥𝐴)
32313expa 1257 . . . . . . 7 (((𝜑𝑎 ∈ ℤ) ∧ 0 ≤ 𝑎) → 0 ≤ 𝑎 / 𝑥𝐴)
3320, 32absidd 14009 . . . . . 6 (((𝜑𝑎 ∈ ℤ) ∧ 0 ≤ 𝑎) → (abs‘𝑎 / 𝑥𝐴) = 𝑎 / 𝑥𝐴)
34 zre 11258 . . . . . . . . 9 (𝑎 ∈ ℤ → 𝑎 ∈ ℝ)
3534ad2antlr 759 . . . . . . . 8 (((𝜑𝑎 ∈ ℤ) ∧ 0 ≤ 𝑎) → 𝑎 ∈ ℝ)
36 absid 13884 . . . . . . . 8 ((𝑎 ∈ ℝ ∧ 0 ≤ 𝑎) → (abs‘𝑎) = 𝑎)
3735, 36sylancom 698 . . . . . . 7 (((𝜑𝑎 ∈ ℤ) ∧ 0 ≤ 𝑎) → (abs‘𝑎) = 𝑎)
3837csbeq1d 3506 . . . . . 6 (((𝜑𝑎 ∈ ℤ) ∧ 0 ≤ 𝑎) → (abs‘𝑎) / 𝑥𝐴 = 𝑎 / 𝑥𝐴)
3933, 38eqtr4d 2647 . . . . 5 (((𝜑𝑎 ∈ ℤ) ∧ 0 ≤ 𝑎) → (abs‘𝑎 / 𝑥𝐴) = (abs‘𝑎) / 𝑥𝐴)
40 nfv 1830 . . . . . . . 8 𝑦((𝜑𝑎 ∈ ℤ) → -𝑎 / 𝑥𝐴 = -𝑎 / 𝑥𝐴)
41 eleq1 2676 . . . . . . . . . 10 (𝑦 = 𝑎 → (𝑦 ∈ ℤ ↔ 𝑎 ∈ ℤ))
4241anbi2d 736 . . . . . . . . 9 (𝑦 = 𝑎 → ((𝜑𝑦 ∈ ℤ) ↔ (𝜑𝑎 ∈ ℤ)))
43 negex 10158 . . . . . . . . . . . 12 -𝑦 ∈ V
44 oddcomabszz.5 . . . . . . . . . . . 12 (𝑥 = -𝑦𝐴 = 𝐶)
4543, 44csbie 3525 . . . . . . . . . . 11 -𝑦 / 𝑥𝐴 = 𝐶
46 negeq 10152 . . . . . . . . . . . 12 (𝑦 = 𝑎 → -𝑦 = -𝑎)
4746csbeq1d 3506 . . . . . . . . . . 11 (𝑦 = 𝑎-𝑦 / 𝑥𝐴 = -𝑎 / 𝑥𝐴)
4845, 47syl5eqr 2658 . . . . . . . . . 10 (𝑦 = 𝑎𝐶 = -𝑎 / 𝑥𝐴)
49 vex 3176 . . . . . . . . . . . . 13 𝑦 ∈ V
50 oddcomabszz.4 . . . . . . . . . . . . 13 (𝑥 = 𝑦𝐴 = 𝐵)
5149, 50csbie 3525 . . . . . . . . . . . 12 𝑦 / 𝑥𝐴 = 𝐵
52 csbeq1 3502 . . . . . . . . . . . 12 (𝑦 = 𝑎𝑦 / 𝑥𝐴 = 𝑎 / 𝑥𝐴)
5351, 52syl5eqr 2658 . . . . . . . . . . 11 (𝑦 = 𝑎𝐵 = 𝑎 / 𝑥𝐴)
5453negeqd 10154 . . . . . . . . . 10 (𝑦 = 𝑎 → -𝐵 = -𝑎 / 𝑥𝐴)
5548, 54eqeq12d 2625 . . . . . . . . 9 (𝑦 = 𝑎 → (𝐶 = -𝐵-𝑎 / 𝑥𝐴 = -𝑎 / 𝑥𝐴))
5642, 55imbi12d 333 . . . . . . . 8 (𝑦 = 𝑎 → (((𝜑𝑦 ∈ ℤ) → 𝐶 = -𝐵) ↔ ((𝜑𝑎 ∈ ℤ) → -𝑎 / 𝑥𝐴 = -𝑎 / 𝑥𝐴)))
57 oddcomabszz.3 . . . . . . . 8 ((𝜑𝑦 ∈ ℤ) → 𝐶 = -𝐵)
5840, 56, 57chvar 2250 . . . . . . 7 ((𝜑𝑎 ∈ ℤ) → -𝑎 / 𝑥𝐴 = -𝑎 / 𝑥𝐴)
5958adantr 480 . . . . . 6 (((𝜑𝑎 ∈ ℤ) ∧ 𝑎 ≤ 0) → -𝑎 / 𝑥𝐴 = -𝑎 / 𝑥𝐴)
6034ad2antlr 759 . . . . . . . 8 (((𝜑𝑎 ∈ ℤ) ∧ 𝑎 ≤ 0) → 𝑎 ∈ ℝ)
61 absnid 13886 . . . . . . . 8 ((𝑎 ∈ ℝ ∧ 𝑎 ≤ 0) → (abs‘𝑎) = -𝑎)
6260, 61sylancom 698 . . . . . . 7 (((𝜑𝑎 ∈ ℤ) ∧ 𝑎 ≤ 0) → (abs‘𝑎) = -𝑎)
6362csbeq1d 3506 . . . . . 6 (((𝜑𝑎 ∈ ℤ) ∧ 𝑎 ≤ 0) → (abs‘𝑎) / 𝑥𝐴 = -𝑎 / 𝑥𝐴)
6419adantr 480 . . . . . . 7 (((𝜑𝑎 ∈ ℤ) ∧ 𝑎 ≤ 0) → 𝑎 / 𝑥𝐴 ∈ ℝ)
65 znegcl 11289 . . . . . . . . . . 11 (𝑎 ∈ ℤ → -𝑎 ∈ ℤ)
66 nfv 1830 . . . . . . . . . . . . . 14 𝑥(𝜑 ∧ -𝑎 ∈ ℤ ∧ 0 ≤ -𝑎)
67 nfcsb1v 3515 . . . . . . . . . . . . . . 15 𝑥-𝑎 / 𝑥𝐴
6822, 23, 67nfbr 4629 . . . . . . . . . . . . . 14 𝑥0 ≤ -𝑎 / 𝑥𝐴
6966, 68nfim 1813 . . . . . . . . . . . . 13 𝑥((𝜑 ∧ -𝑎 ∈ ℤ ∧ 0 ≤ -𝑎) → 0 ≤ -𝑎 / 𝑥𝐴)
70 negex 10158 . . . . . . . . . . . . 13 -𝑎 ∈ V
71 eleq1 2676 . . . . . . . . . . . . . . 15 (𝑥 = -𝑎 → (𝑥 ∈ ℤ ↔ -𝑎 ∈ ℤ))
72 breq2 4587 . . . . . . . . . . . . . . 15 (𝑥 = -𝑎 → (0 ≤ 𝑥 ↔ 0 ≤ -𝑎))
7371, 723anbi23d 1394 . . . . . . . . . . . . . 14 (𝑥 = -𝑎 → ((𝜑𝑥 ∈ ℤ ∧ 0 ≤ 𝑥) ↔ (𝜑 ∧ -𝑎 ∈ ℤ ∧ 0 ≤ -𝑎)))
74 csbeq1a 3508 . . . . . . . . . . . . . . 15 (𝑥 = -𝑎𝐴 = -𝑎 / 𝑥𝐴)
7574breq2d 4595 . . . . . . . . . . . . . 14 (𝑥 = -𝑎 → (0 ≤ 𝐴 ↔ 0 ≤ -𝑎 / 𝑥𝐴))
7673, 75imbi12d 333 . . . . . . . . . . . . 13 (𝑥 = -𝑎 → (((𝜑𝑥 ∈ ℤ ∧ 0 ≤ 𝑥) → 0 ≤ 𝐴) ↔ ((𝜑 ∧ -𝑎 ∈ ℤ ∧ 0 ≤ -𝑎) → 0 ≤ -𝑎 / 𝑥𝐴)))
7769, 70, 76, 30vtoclf 3231 . . . . . . . . . . . 12 ((𝜑 ∧ -𝑎 ∈ ℤ ∧ 0 ≤ -𝑎) → 0 ≤ -𝑎 / 𝑥𝐴)
78773expia 1259 . . . . . . . . . . 11 ((𝜑 ∧ -𝑎 ∈ ℤ) → (0 ≤ -𝑎 → 0 ≤ -𝑎 / 𝑥𝐴))
7965, 78sylan2 490 . . . . . . . . . 10 ((𝜑𝑎 ∈ ℤ) → (0 ≤ -𝑎 → 0 ≤ -𝑎 / 𝑥𝐴))
8058breq2d 4595 . . . . . . . . . 10 ((𝜑𝑎 ∈ ℤ) → (0 ≤ -𝑎 / 𝑥𝐴 ↔ 0 ≤ -𝑎 / 𝑥𝐴))
8179, 80sylibd 228 . . . . . . . . 9 ((𝜑𝑎 ∈ ℤ) → (0 ≤ -𝑎 → 0 ≤ -𝑎 / 𝑥𝐴))
8234adantl 481 . . . . . . . . . 10 ((𝜑𝑎 ∈ ℤ) → 𝑎 ∈ ℝ)
8382le0neg1d 10478 . . . . . . . . 9 ((𝜑𝑎 ∈ ℤ) → (𝑎 ≤ 0 ↔ 0 ≤ -𝑎))
8419le0neg1d 10478 . . . . . . . . 9 ((𝜑𝑎 ∈ ℤ) → (𝑎 / 𝑥𝐴 ≤ 0 ↔ 0 ≤ -𝑎 / 𝑥𝐴))
8581, 83, 843imtr4d 282 . . . . . . . 8 ((𝜑𝑎 ∈ ℤ) → (𝑎 ≤ 0 → 𝑎 / 𝑥𝐴 ≤ 0))
8685imp 444 . . . . . . 7 (((𝜑𝑎 ∈ ℤ) ∧ 𝑎 ≤ 0) → 𝑎 / 𝑥𝐴 ≤ 0)
8764, 86absnidd 14000 . . . . . 6 (((𝜑𝑎 ∈ ℤ) ∧ 𝑎 ≤ 0) → (abs‘𝑎 / 𝑥𝐴) = -𝑎 / 𝑥𝐴)
8859, 63, 873eqtr4rd 2655 . . . . 5 (((𝜑𝑎 ∈ ℤ) ∧ 𝑎 ≤ 0) → (abs‘𝑎 / 𝑥𝐴) = (abs‘𝑎) / 𝑥𝐴)
89 0re 9919 . . . . . . 7 0 ∈ ℝ
90 letric 10016 . . . . . . 7 ((0 ∈ ℝ ∧ 𝑎 ∈ ℝ) → (0 ≤ 𝑎𝑎 ≤ 0))
9189, 34, 90sylancr 694 . . . . . 6 (𝑎 ∈ ℤ → (0 ≤ 𝑎𝑎 ≤ 0))
9291adantl 481 . . . . 5 ((𝜑𝑎 ∈ ℤ) → (0 ≤ 𝑎𝑎 ≤ 0))
9339, 88, 92mpjaodan 823 . . . 4 ((𝜑𝑎 ∈ ℤ) → (abs‘𝑎 / 𝑥𝐴) = (abs‘𝑎) / 𝑥𝐴)
948, 93vtoclg 3239 . . 3 (𝐷 ∈ ℤ → ((𝜑𝐷 ∈ ℤ) → (abs‘𝐷 / 𝑥𝐴) = (abs‘𝐷) / 𝑥𝐴))
9594anabsi7 856 . 2 ((𝜑𝐷 ∈ ℤ) → (abs‘𝐷 / 𝑥𝐴) = (abs‘𝐷) / 𝑥𝐴)
96 nfcvd 2752 . . . . 5 (𝐷 ∈ ℤ → 𝑥𝐸)
97 oddcomabszz.6 . . . . 5 (𝑥 = 𝐷𝐴 = 𝐸)
9896, 97csbiegf 3523 . . . 4 (𝐷 ∈ ℤ → 𝐷 / 𝑥𝐴 = 𝐸)
9998fveq2d 6107 . . 3 (𝐷 ∈ ℤ → (abs‘𝐷 / 𝑥𝐴) = (abs‘𝐸))
10099adantl 481 . 2 ((𝜑𝐷 ∈ ℤ) → (abs‘𝐷 / 𝑥𝐴) = (abs‘𝐸))
101 fvex 6113 . . . 4 (abs‘𝐷) ∈ V
102 oddcomabszz.7 . . . 4 (𝑥 = (abs‘𝐷) → 𝐴 = 𝐹)
103101, 102csbie 3525 . . 3 (abs‘𝐷) / 𝑥𝐴 = 𝐹
104103a1i 11 . 2 ((𝜑𝐷 ∈ ℤ) → (abs‘𝐷) / 𝑥𝐴 = 𝐹)
10595, 100, 1043eqtr3d 2652 1 ((𝜑𝐷 ∈ ℤ) → (abs‘𝐸) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 382  wa 383  w3a 1031   = wceq 1475  wcel 1977  csb 3499   class class class wbr 4583  cfv 5804  cr 9814  0cc0 9815  cle 9954  -cneg 10146  cz 11254  abscabs 13822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824
This theorem is referenced by:  rmyabs  36543
  Copyright terms: Public domain W3C validator