Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oddcomabszz Structured version   Unicode version

Theorem oddcomabszz 29238
Description: An odd function which takes nonnegative values on nonnegative arguments commutes with  abs. (Contributed by Stefan O'Rear, 26-Sep-2014.)
Hypotheses
Ref Expression
oddcomabszz.1  |-  ( (
ph  /\  x  e.  ZZ )  ->  A  e.  RR )
oddcomabszz.2  |-  ( (
ph  /\  x  e.  ZZ  /\  0  <_  x
)  ->  0  <_  A )
oddcomabszz.3  |-  ( (
ph  /\  y  e.  ZZ )  ->  C  = 
-u B )
oddcomabszz.4  |-  ( x  =  y  ->  A  =  B )
oddcomabszz.5  |-  ( x  =  -u y  ->  A  =  C )
oddcomabszz.6  |-  ( x  =  D  ->  A  =  E )
oddcomabszz.7  |-  ( x  =  ( abs `  D
)  ->  A  =  F )
Assertion
Ref Expression
oddcomabszz  |-  ( (
ph  /\  D  e.  ZZ )  ->  ( abs `  E )  =  F )
Distinct variable groups:    x, B    x, C    x, D, y   
x, E    x, F    y, A    ph, x, y
Allowed substitution hints:    A( x)    B( y)    C( y)    E( y)    F( y)

Proof of Theorem oddcomabszz
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 eleq1 2498 . . . . . 6  |-  ( a  =  D  ->  (
a  e.  ZZ  <->  D  e.  ZZ ) )
21anbi2d 703 . . . . 5  |-  ( a  =  D  ->  (
( ph  /\  a  e.  ZZ )  <->  ( ph  /\  D  e.  ZZ ) ) )
3 csbeq1 3286 . . . . . . 7  |-  ( a  =  D  ->  [_ a  /  x ]_ A  = 
[_ D  /  x ]_ A )
43fveq2d 5690 . . . . . 6  |-  ( a  =  D  ->  ( abs `  [_ a  /  x ]_ A )  =  ( abs `  [_ D  /  x ]_ A ) )
5 fveq2 5686 . . . . . . 7  |-  ( a  =  D  ->  ( abs `  a )  =  ( abs `  D
) )
65csbeq1d 3290 . . . . . 6  |-  ( a  =  D  ->  [_ ( abs `  a )  /  x ]_ A  =  [_ ( abs `  D )  /  x ]_ A
)
74, 6eqeq12d 2452 . . . . 5  |-  ( a  =  D  ->  (
( abs `  [_ a  /  x ]_ A )  =  [_ ( abs `  a )  /  x ]_ A  <->  ( abs `  [_ D  /  x ]_ A )  =  [_ ( abs `  D )  /  x ]_ A ) )
82, 7imbi12d 320 . . . 4  |-  ( a  =  D  ->  (
( ( ph  /\  a  e.  ZZ )  ->  ( abs `  [_ a  /  x ]_ A )  =  [_ ( abs `  a )  /  x ]_ A )  <->  ( ( ph  /\  D  e.  ZZ )  ->  ( abs `  [_ D  /  x ]_ A )  =  [_ ( abs `  D )  /  x ]_ A ) ) )
9 nfv 1673 . . . . . . . . . 10  |-  F/ x
( ph  /\  a  e.  ZZ )
10 nfcsb1v 3299 . . . . . . . . . . 11  |-  F/_ x [_ a  /  x ]_ A
1110nfel1 2584 . . . . . . . . . 10  |-  F/ x [_ a  /  x ]_ A  e.  RR
129, 11nfim 1852 . . . . . . . . 9  |-  F/ x
( ( ph  /\  a  e.  ZZ )  ->  [_ a  /  x ]_ A  e.  RR )
13 eleq1 2498 . . . . . . . . . . 11  |-  ( x  =  a  ->  (
x  e.  ZZ  <->  a  e.  ZZ ) )
1413anbi2d 703 . . . . . . . . . 10  |-  ( x  =  a  ->  (
( ph  /\  x  e.  ZZ )  <->  ( ph  /\  a  e.  ZZ ) ) )
15 csbeq1a 3292 . . . . . . . . . . 11  |-  ( x  =  a  ->  A  =  [_ a  /  x ]_ A )
1615eleq1d 2504 . . . . . . . . . 10  |-  ( x  =  a  ->  ( A  e.  RR  <->  [_ a  /  x ]_ A  e.  RR ) )
1714, 16imbi12d 320 . . . . . . . . 9  |-  ( x  =  a  ->  (
( ( ph  /\  x  e.  ZZ )  ->  A  e.  RR )  <-> 
( ( ph  /\  a  e.  ZZ )  ->  [_ a  /  x ]_ A  e.  RR ) ) )
18 oddcomabszz.1 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ZZ )  ->  A  e.  RR )
1912, 17, 18chvar 1957 . . . . . . . 8  |-  ( (
ph  /\  a  e.  ZZ )  ->  [_ a  /  x ]_ A  e.  RR )
2019adantr 465 . . . . . . 7  |-  ( ( ( ph  /\  a  e.  ZZ )  /\  0  <_  a )  ->  [_ a  /  x ]_ A  e.  RR )
21 nfv 1673 . . . . . . . . . 10  |-  F/ x
( ph  /\  a  e.  ZZ  /\  0  <_ 
a )
22 nfcv 2574 . . . . . . . . . . 11  |-  F/_ x
0
23 nfcv 2574 . . . . . . . . . . 11  |-  F/_ x  <_
2422, 23, 10nfbr 4331 . . . . . . . . . 10  |-  F/ x
0  <_  [_ a  /  x ]_ A
2521, 24nfim 1852 . . . . . . . . 9  |-  F/ x
( ( ph  /\  a  e.  ZZ  /\  0  <_  a )  ->  0  <_  [_ a  /  x ]_ A )
26 breq2 4291 . . . . . . . . . . 11  |-  ( x  =  a  ->  (
0  <_  x  <->  0  <_  a ) )
2713, 263anbi23d 1292 . . . . . . . . . 10  |-  ( x  =  a  ->  (
( ph  /\  x  e.  ZZ  /\  0  <_  x )  <->  ( ph  /\  a  e.  ZZ  /\  0  <_  a ) ) )
2815breq2d 4299 . . . . . . . . . 10  |-  ( x  =  a  ->  (
0  <_  A  <->  0  <_  [_ a  /  x ]_ A ) )
2927, 28imbi12d 320 . . . . . . . . 9  |-  ( x  =  a  ->  (
( ( ph  /\  x  e.  ZZ  /\  0  <_  x )  ->  0  <_  A )  <->  ( ( ph  /\  a  e.  ZZ  /\  0  <_  a )  ->  0  <_  [_ a  /  x ]_ A ) ) )
30 oddcomabszz.2 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ZZ  /\  0  <_  x
)  ->  0  <_  A )
3125, 29, 30chvar 1957 . . . . . . . 8  |-  ( (
ph  /\  a  e.  ZZ  /\  0  <_  a
)  ->  0  <_  [_ a  /  x ]_ A )
32313expa 1187 . . . . . . 7  |-  ( ( ( ph  /\  a  e.  ZZ )  /\  0  <_  a )  ->  0  <_  [_ a  /  x ]_ A )
3320, 32absidd 12901 . . . . . 6  |-  ( ( ( ph  /\  a  e.  ZZ )  /\  0  <_  a )  ->  ( abs `  [_ a  /  x ]_ A )  = 
[_ a  /  x ]_ A )
34 zre 10642 . . . . . . . . 9  |-  ( a  e.  ZZ  ->  a  e.  RR )
3534ad2antlr 726 . . . . . . . 8  |-  ( ( ( ph  /\  a  e.  ZZ )  /\  0  <_  a )  ->  a  e.  RR )
36 absid 12777 . . . . . . . 8  |-  ( ( a  e.  RR  /\  0  <_  a )  -> 
( abs `  a
)  =  a )
3735, 36sylancom 667 . . . . . . 7  |-  ( ( ( ph  /\  a  e.  ZZ )  /\  0  <_  a )  ->  ( abs `  a )  =  a )
3837csbeq1d 3290 . . . . . 6  |-  ( ( ( ph  /\  a  e.  ZZ )  /\  0  <_  a )  ->  [_ ( abs `  a )  /  x ]_ A  =  [_ a  /  x ]_ A
)
3933, 38eqtr4d 2473 . . . . 5  |-  ( ( ( ph  /\  a  e.  ZZ )  /\  0  <_  a )  ->  ( abs `  [_ a  /  x ]_ A )  = 
[_ ( abs `  a
)  /  x ]_ A )
40 nfv 1673 . . . . . . . 8  |-  F/ y ( ( ph  /\  a  e.  ZZ )  ->  [_ -u a  /  x ]_ A  =  -u [_ a  /  x ]_ A )
41 eleq1 2498 . . . . . . . . . 10  |-  ( y  =  a  ->  (
y  e.  ZZ  <->  a  e.  ZZ ) )
4241anbi2d 703 . . . . . . . . 9  |-  ( y  =  a  ->  (
( ph  /\  y  e.  ZZ )  <->  ( ph  /\  a  e.  ZZ ) ) )
43 negex 9600 . . . . . . . . . . . 12  |-  -u y  e.  _V
44 nfcv 2574 . . . . . . . . . . . 12  |-  F/_ x C
45 oddcomabszz.5 . . . . . . . . . . . 12  |-  ( x  =  -u y  ->  A  =  C )
4643, 44, 45csbief 3308 . . . . . . . . . . 11  |-  [_ -u y  /  x ]_ A  =  C
47 negeq 9594 . . . . . . . . . . . 12  |-  ( y  =  a  ->  -u y  =  -u a )
4847csbeq1d 3290 . . . . . . . . . . 11  |-  ( y  =  a  ->  [_ -u y  /  x ]_ A  = 
[_ -u a  /  x ]_ A )
4946, 48syl5eqr 2484 . . . . . . . . . 10  |-  ( y  =  a  ->  C  =  [_ -u a  /  x ]_ A )
50 vex 2970 . . . . . . . . . . . . 13  |-  y  e. 
_V
51 nfcv 2574 . . . . . . . . . . . . 13  |-  F/_ x B
52 oddcomabszz.4 . . . . . . . . . . . . 13  |-  ( x  =  y  ->  A  =  B )
5350, 51, 52csbief 3308 . . . . . . . . . . . 12  |-  [_ y  /  x ]_ A  =  B
54 csbeq1 3286 . . . . . . . . . . . 12  |-  ( y  =  a  ->  [_ y  /  x ]_ A  = 
[_ a  /  x ]_ A )
5553, 54syl5eqr 2484 . . . . . . . . . . 11  |-  ( y  =  a  ->  B  =  [_ a  /  x ]_ A )
5655negeqd 9596 . . . . . . . . . 10  |-  ( y  =  a  ->  -u B  =  -u [_ a  /  x ]_ A )
5749, 56eqeq12d 2452 . . . . . . . . 9  |-  ( y  =  a  ->  ( C  =  -u B  <->  [_ -u a  /  x ]_ A  = 
-u [_ a  /  x ]_ A ) )
5842, 57imbi12d 320 . . . . . . . 8  |-  ( y  =  a  ->  (
( ( ph  /\  y  e.  ZZ )  ->  C  =  -u B
)  <->  ( ( ph  /\  a  e.  ZZ )  ->  [_ -u a  /  x ]_ A  =  -u [_ a  /  x ]_ A ) ) )
59 oddcomabszz.3 . . . . . . . 8  |-  ( (
ph  /\  y  e.  ZZ )  ->  C  = 
-u B )
6040, 58, 59chvar 1957 . . . . . . 7  |-  ( (
ph  /\  a  e.  ZZ )  ->  [_ -u a  /  x ]_ A  = 
-u [_ a  /  x ]_ A )
6160adantr 465 . . . . . 6  |-  ( ( ( ph  /\  a  e.  ZZ )  /\  a  <_  0 )  ->  [_ -u a  /  x ]_ A  = 
-u [_ a  /  x ]_ A )
6234ad2antlr 726 . . . . . . . 8  |-  ( ( ( ph  /\  a  e.  ZZ )  /\  a  <_  0 )  ->  a  e.  RR )
63 absnid 12779 . . . . . . . 8  |-  ( ( a  e.  RR  /\  a  <_  0 )  -> 
( abs `  a
)  =  -u a
)
6462, 63sylancom 667 . . . . . . 7  |-  ( ( ( ph  /\  a  e.  ZZ )  /\  a  <_  0 )  ->  ( abs `  a )  = 
-u a )
6564csbeq1d 3290 . . . . . 6  |-  ( ( ( ph  /\  a  e.  ZZ )  /\  a  <_  0 )  ->  [_ ( abs `  a )  /  x ]_ A  =  [_ -u a  /  x ]_ A )
6619adantr 465 . . . . . . 7  |-  ( ( ( ph  /\  a  e.  ZZ )  /\  a  <_  0 )  ->  [_ a  /  x ]_ A  e.  RR )
67 znegcl 10672 . . . . . . . . . . 11  |-  ( a  e.  ZZ  ->  -u a  e.  ZZ )
68 nfv 1673 . . . . . . . . . . . . . 14  |-  F/ x
( ph  /\  -u a  e.  ZZ  /\  0  <_  -u a )
69 nfcsb1v 3299 . . . . . . . . . . . . . . 15  |-  F/_ x [_ -u a  /  x ]_ A
7022, 23, 69nfbr 4331 . . . . . . . . . . . . . 14  |-  F/ x
0  <_  [_ -u a  /  x ]_ A
7168, 70nfim 1852 . . . . . . . . . . . . 13  |-  F/ x
( ( ph  /\  -u a  e.  ZZ  /\  0  <_  -u a )  -> 
0  <_  [_ -u a  /  x ]_ A )
72 negex 9600 . . . . . . . . . . . . 13  |-  -u a  e.  _V
73 eleq1 2498 . . . . . . . . . . . . . . 15  |-  ( x  =  -u a  ->  (
x  e.  ZZ  <->  -u a  e.  ZZ ) )
74 breq2 4291 . . . . . . . . . . . . . . 15  |-  ( x  =  -u a  ->  (
0  <_  x  <->  0  <_  -u a ) )
7573, 743anbi23d 1292 . . . . . . . . . . . . . 14  |-  ( x  =  -u a  ->  (
( ph  /\  x  e.  ZZ  /\  0  <_  x )  <->  ( ph  /\  -u a  e.  ZZ  /\  0  <_  -u a ) ) )
76 csbeq1a 3292 . . . . . . . . . . . . . . 15  |-  ( x  =  -u a  ->  A  =  [_ -u a  /  x ]_ A )
7776breq2d 4299 . . . . . . . . . . . . . 14  |-  ( x  =  -u a  ->  (
0  <_  A  <->  0  <_  [_ -u a  /  x ]_ A ) )
7875, 77imbi12d 320 . . . . . . . . . . . . 13  |-  ( x  =  -u a  ->  (
( ( ph  /\  x  e.  ZZ  /\  0  <_  x )  ->  0  <_  A )  <->  ( ( ph  /\  -u a  e.  ZZ  /\  0  <_  -u a )  ->  0  <_  [_ -u a  /  x ]_ A ) ) )
7971, 72, 78, 30vtoclf 3018 . . . . . . . . . . . 12  |-  ( (
ph  /\  -u a  e.  ZZ  /\  0  <_  -u a )  ->  0  <_  [_ -u a  /  x ]_ A )
80793expia 1189 . . . . . . . . . . 11  |-  ( (
ph  /\  -u a  e.  ZZ )  ->  (
0  <_  -u a  -> 
0  <_  [_ -u a  /  x ]_ A ) )
8167, 80sylan2 474 . . . . . . . . . 10  |-  ( (
ph  /\  a  e.  ZZ )  ->  ( 0  <_  -u a  ->  0  <_  [_ -u a  /  x ]_ A ) )
8260breq2d 4299 . . . . . . . . . 10  |-  ( (
ph  /\  a  e.  ZZ )  ->  ( 0  <_  [_ -u a  /  x ]_ A  <->  0  <_  -u [_ a  /  x ]_ A ) )
8381, 82sylibd 214 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  ZZ )  ->  ( 0  <_  -u a  ->  0  <_ 
-u [_ a  /  x ]_ A ) )
8434adantl 466 . . . . . . . . . 10  |-  ( (
ph  /\  a  e.  ZZ )  ->  a  e.  RR )
8584le0neg1d 9903 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  ZZ )  ->  ( a  <_  0  <->  0  <_  -u a ) )
8619le0neg1d 9903 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  ZZ )  ->  ( [_ a  /  x ]_ A  <_  0  <->  0  <_  -u [_ a  /  x ]_ A ) )
8783, 85, 863imtr4d 268 . . . . . . . 8  |-  ( (
ph  /\  a  e.  ZZ )  ->  ( a  <_  0  ->  [_ a  /  x ]_ A  <_ 
0 ) )
8887imp 429 . . . . . . 7  |-  ( ( ( ph  /\  a  e.  ZZ )  /\  a  <_  0 )  ->  [_ a  /  x ]_ A  <_ 
0 )
8966, 88absnidd 12892 . . . . . 6  |-  ( ( ( ph  /\  a  e.  ZZ )  /\  a  <_  0 )  ->  ( abs `  [_ a  /  x ]_ A )  = 
-u [_ a  /  x ]_ A )
9061, 65, 893eqtr4rd 2481 . . . . 5  |-  ( ( ( ph  /\  a  e.  ZZ )  /\  a  <_  0 )  ->  ( abs `  [_ a  /  x ]_ A )  = 
[_ ( abs `  a
)  /  x ]_ A )
91 0re 9378 . . . . . . 7  |-  0  e.  RR
92 letric 9467 . . . . . . 7  |-  ( ( 0  e.  RR  /\  a  e.  RR )  ->  ( 0  <_  a  \/  a  <_  0 ) )
9391, 34, 92sylancr 663 . . . . . 6  |-  ( a  e.  ZZ  ->  (
0  <_  a  \/  a  <_  0 ) )
9493adantl 466 . . . . 5  |-  ( (
ph  /\  a  e.  ZZ )  ->  ( 0  <_  a  \/  a  <_  0 ) )
9539, 90, 94mpjaodan 784 . . . 4  |-  ( (
ph  /\  a  e.  ZZ )  ->  ( abs `  [_ a  /  x ]_ A )  =  [_ ( abs `  a )  /  x ]_ A
)
968, 95vtoclg 3025 . . 3  |-  ( D  e.  ZZ  ->  (
( ph  /\  D  e.  ZZ )  ->  ( abs `  [_ D  /  x ]_ A )  = 
[_ ( abs `  D
)  /  x ]_ A ) )
9796anabsi7 815 . 2  |-  ( (
ph  /\  D  e.  ZZ )  ->  ( abs `  [_ D  /  x ]_ A )  =  [_ ( abs `  D )  /  x ]_ A
)
98 nfcvd 2575 . . . . 5  |-  ( D  e.  ZZ  ->  F/_ x E )
99 oddcomabszz.6 . . . . 5  |-  ( x  =  D  ->  A  =  E )
10098, 99csbiegf 3307 . . . 4  |-  ( D  e.  ZZ  ->  [_ D  /  x ]_ A  =  E )
101100fveq2d 5690 . . 3  |-  ( D  e.  ZZ  ->  ( abs `  [_ D  /  x ]_ A )  =  ( abs `  E
) )
102101adantl 466 . 2  |-  ( (
ph  /\  D  e.  ZZ )  ->  ( abs `  [_ D  /  x ]_ A )  =  ( abs `  E ) )
103 fvex 5696 . . . 4  |-  ( abs `  D )  e.  _V
104 nfcv 2574 . . . 4  |-  F/_ x F
105 oddcomabszz.7 . . . 4  |-  ( x  =  ( abs `  D
)  ->  A  =  F )
106103, 104, 105csbief 3308 . . 3  |-  [_ ( abs `  D )  /  x ]_ A  =  F
107106a1i 11 . 2  |-  ( (
ph  /\  D  e.  ZZ )  ->  [_ ( abs `  D )  /  x ]_ A  =  F )
10897, 102, 1073eqtr3d 2478 1  |-  ( (
ph  /\  D  e.  ZZ )  ->  ( abs `  E )  =  F )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 368    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   [_csb 3283   class class class wbr 4287   ` cfv 5413   RRcr 9273   0cc0 9274    <_ cle 9411   -ucneg 9588   ZZcz 10638   abscabs 12715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-cnex 9330  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351  ax-pre-sup 9352
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-reu 2717  df-rmo 2718  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-pss 3339  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-uni 4087  df-iun 4168  df-br 4288  df-opab 4346  df-mpt 4347  df-tr 4381  df-eprel 4627  df-id 4631  df-po 4636  df-so 4637  df-fr 4674  df-we 4676  df-ord 4717  df-on 4718  df-lim 4719  df-suc 4720  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-riota 6047  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-om 6472  df-2nd 6573  df-recs 6824  df-rdg 6858  df-er 7093  df-en 7303  df-dom 7304  df-sdom 7305  df-sup 7683  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-div 9986  df-nn 10315  df-2 10372  df-3 10373  df-n0 10572  df-z 10639  df-uz 10854  df-rp 10984  df-seq 11799  df-exp 11858  df-cj 12580  df-re 12581  df-im 12582  df-sqr 12716  df-abs 12717
This theorem is referenced by:  rmyabs  29254
  Copyright terms: Public domain W3C validator