Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbiegf Structured version   Visualization version   GIF version

Theorem csbiegf 3523
 Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by NM, 11-Nov-2005.) (Revised by Mario Carneiro, 13-Oct-2016.)
Hypotheses
Ref Expression
csbiegf.1 (𝐴𝑉𝑥𝐶)
csbiegf.2 (𝑥 = 𝐴𝐵 = 𝐶)
Assertion
Ref Expression
csbiegf (𝐴𝑉𝐴 / 𝑥𝐵 = 𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑉
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem csbiegf
StepHypRef Expression
1 csbiegf.2 . . 3 (𝑥 = 𝐴𝐵 = 𝐶)
21ax-gen 1713 . 2 𝑥(𝑥 = 𝐴𝐵 = 𝐶)
3 csbiegf.1 . . 3 (𝐴𝑉𝑥𝐶)
4 csbiebt 3519 . . 3 ((𝐴𝑉𝑥𝐶) → (∀𝑥(𝑥 = 𝐴𝐵 = 𝐶) ↔ 𝐴 / 𝑥𝐵 = 𝐶))
53, 4mpdan 699 . 2 (𝐴𝑉 → (∀𝑥(𝑥 = 𝐴𝐵 = 𝐶) ↔ 𝐴 / 𝑥𝐵 = 𝐶))
62, 5mpbii 222 1 (𝐴𝑉𝐴 / 𝑥𝐵 = 𝐶)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195  ∀wal 1473   = wceq 1475   ∈ wcel 1977  Ⅎwnfc 2738  ⦋csb 3499 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-v 3175  df-sbc 3403  df-csb 3500 This theorem is referenced by:  csbief  3524  sbcco3g  3951  csbco3g  3952  fmptcof  6304  fmpt2co  7147  sumsn  14319  prodsn  14531  prodsnf  14533  bpolylem  14618  pcmpt  15434  chfacfpmmulfsupp  20487  elmptrab  21440  dvfsumrlim3  23600  itgsubstlem  23615  itgsubst  23616  nbgraopALT  25953  ifeqeqx  28745  disjunsn  28789  sbcaltop  31258  unirep  32677  cdleme31so  34685  cdleme31sn  34686  cdleme31sn1  34687  cdleme31se  34688  cdleme31se2  34689  cdleme31sc  34690  cdleme31sde  34691  cdleme31sn2  34695  cdlemeg47rv2  34816  cdlemk41  35226  monotuz  36524  oddcomabszz  36527  sumsnf  38636
 Copyright terms: Public domain W3C validator