Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwwlk2 Structured version   Visualization version   GIF version

Theorem numclwwlk2 26634
 Description: Statement 10 in [Huneke] p. 2: "If n > 1, then the number of closed n-walks v(0) ... v(n-2) v(n-1) v(n) from v = v(0) = v(n) ... with v(n-2) =/= v is k^(n-2) - f(n-2)." According to rusgranumwlkg 26485, we have k^(n-2) different walks of length (n-2): v(0) ... v(n-2). From this number, the number of closed walks of length (n-2), which is f(n-2) per definition, must be subtracted, because for these walks v(n-2) =/= v(0) = v would hold. Because of the friendship condition, there is exactly one vertex v(n-1) which is a neighbor of v(n-2) as well as of v(n)=v=v(0), because v(n-2) and v(n)=v are different, so the number of walks v(0) ... v(n-2) is identical with the number of walks v(0) ... v(n), that means each (not closed) walk v(0) ... v(n-2) can be extended by two edges to a closed walk v(0) ... v(n)=v=v(0) in exactly one way. (Contributed by Alexander van der Vekens, 6-Oct-2018.)
Hypotheses
Ref Expression
numclwwlk.c 𝐶 = (𝑛 ∈ ℕ0 ↦ ((𝑉 ClWWalksN 𝐸)‘𝑛))
numclwwlk.f 𝐹 = (𝑣𝑉, 𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝐶𝑛) ∣ (𝑤‘0) = 𝑣})
numclwwlk.g 𝐺 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝐶𝑛) ∣ ((𝑤‘0) = 𝑣 ∧ (𝑤‘(𝑛 − 2)) = (𝑤‘0))})
numclwwlk.q 𝑄 = (𝑣𝑉, 𝑛 ∈ ℕ0 ↦ {𝑤 ∈ ((𝑉 WWalksN 𝐸)‘𝑛) ∣ ((𝑤‘0) = 𝑣 ∧ ( lastS ‘𝑤) ≠ 𝑣)})
numclwwlk.h 𝐻 = (𝑣𝑉, 𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝐶𝑛) ∣ ((𝑤‘0) = 𝑣 ∧ (𝑤‘(𝑛 − 2)) ≠ (𝑤‘0))})
Assertion
Ref Expression
numclwwlk2 (((⟨𝑉, 𝐸⟩ RegUSGrph 𝐾𝑉 FriendGrph 𝐸) ∧ (𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) → (#‘(𝑋𝐻𝑁)) = ((𝐾↑(𝑁 − 2)) − (#‘(𝑋𝐹(𝑁 − 2)))))
Distinct variable groups:   𝑛,𝐸   𝑛,𝑁   𝑛,𝑉   𝑤,𝐶   𝑤,𝑁   𝐶,𝑛,𝑣,𝑤   𝑣,𝑁   𝑛,𝑋,𝑣,𝑤   𝑣,𝑉   𝑤,𝐸   𝑤,𝑉   𝑤,𝐹   𝑤,𝑄   𝑤,𝐾   𝑤,𝐺   𝑣,𝐸   𝑣,𝐻,𝑤
Allowed substitution hints:   𝑄(𝑣,𝑛)   𝐹(𝑣,𝑛)   𝐺(𝑣,𝑛)   𝐻(𝑛)   𝐾(𝑣,𝑛)

Proof of Theorem numclwwlk2
StepHypRef Expression
1 eluzelcn 11575 . . . . . . . 8 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℂ)
2 2cnd 10970 . . . . . . . 8 (𝑁 ∈ (ℤ‘3) → 2 ∈ ℂ)
31, 2npcand 10275 . . . . . . 7 (𝑁 ∈ (ℤ‘3) → ((𝑁 − 2) + 2) = 𝑁)
43eqcomd 2616 . . . . . 6 (𝑁 ∈ (ℤ‘3) → 𝑁 = ((𝑁 − 2) + 2))
543ad2ant3 1077 . . . . 5 ((𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → 𝑁 = ((𝑁 − 2) + 2))
65adantl 481 . . . 4 (((⟨𝑉, 𝐸⟩ RegUSGrph 𝐾𝑉 FriendGrph 𝐸) ∧ (𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) → 𝑁 = ((𝑁 − 2) + 2))
76oveq2d 6565 . . 3 (((⟨𝑉, 𝐸⟩ RegUSGrph 𝐾𝑉 FriendGrph 𝐸) ∧ (𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) → (𝑋𝐻𝑁) = (𝑋𝐻((𝑁 − 2) + 2)))
87fveq2d 6107 . 2 (((⟨𝑉, 𝐸⟩ RegUSGrph 𝐾𝑉 FriendGrph 𝐸) ∧ (𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) → (#‘(𝑋𝐻𝑁)) = (#‘(𝑋𝐻((𝑁 − 2) + 2))))
9 simplr 788 . . 3 (((⟨𝑉, 𝐸⟩ RegUSGrph 𝐾𝑉 FriendGrph 𝐸) ∧ (𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) → 𝑉 FriendGrph 𝐸)
10 simp2 1055 . . . 4 ((𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → 𝑋𝑉)
1110adantl 481 . . 3 (((⟨𝑉, 𝐸⟩ RegUSGrph 𝐾𝑉 FriendGrph 𝐸) ∧ (𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) → 𝑋𝑉)
12 uz3m2nn 11607 . . . . 5 (𝑁 ∈ (ℤ‘3) → (𝑁 − 2) ∈ ℕ)
13123ad2ant3 1077 . . . 4 ((𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑁 − 2) ∈ ℕ)
1413adantl 481 . . 3 (((⟨𝑉, 𝐸⟩ RegUSGrph 𝐾𝑉 FriendGrph 𝐸) ∧ (𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) → (𝑁 − 2) ∈ ℕ)
15 numclwwlk.c . . . 4 𝐶 = (𝑛 ∈ ℕ0 ↦ ((𝑉 ClWWalksN 𝐸)‘𝑛))
16 numclwwlk.f . . . 4 𝐹 = (𝑣𝑉, 𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝐶𝑛) ∣ (𝑤‘0) = 𝑣})
17 numclwwlk.g . . . 4 𝐺 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝐶𝑛) ∣ ((𝑤‘0) = 𝑣 ∧ (𝑤‘(𝑛 − 2)) = (𝑤‘0))})
18 numclwwlk.q . . . 4 𝑄 = (𝑣𝑉, 𝑛 ∈ ℕ0 ↦ {𝑤 ∈ ((𝑉 WWalksN 𝐸)‘𝑛) ∣ ((𝑤‘0) = 𝑣 ∧ ( lastS ‘𝑤) ≠ 𝑣)})
19 numclwwlk.h . . . 4 𝐻 = (𝑣𝑉, 𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝐶𝑛) ∣ ((𝑤‘0) = 𝑣 ∧ (𝑤‘(𝑛 − 2)) ≠ (𝑤‘0))})
2015, 16, 17, 18, 19numclwwlk2lem3 26633 . . 3 ((𝑉 FriendGrph 𝐸𝑋𝑉 ∧ (𝑁 − 2) ∈ ℕ) → (#‘(𝑋𝑄(𝑁 − 2))) = (#‘(𝑋𝐻((𝑁 − 2) + 2))))
219, 11, 14, 20syl3anc 1318 . 2 (((⟨𝑉, 𝐸⟩ RegUSGrph 𝐾𝑉 FriendGrph 𝐸) ∧ (𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) → (#‘(𝑋𝑄(𝑁 − 2))) = (#‘(𝑋𝐻((𝑁 − 2) + 2))))
22 simpl 472 . . . 4 ((⟨𝑉, 𝐸⟩ RegUSGrph 𝐾𝑉 FriendGrph 𝐸) → ⟨𝑉, 𝐸⟩ RegUSGrph 𝐾)
23 simp1 1054 . . . 4 ((𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → 𝑉 ∈ Fin)
2422, 23anim12i 588 . . 3 (((⟨𝑉, 𝐸⟩ RegUSGrph 𝐾𝑉 FriendGrph 𝐸) ∧ (𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) → (⟨𝑉, 𝐸⟩ RegUSGrph 𝐾𝑉 ∈ Fin))
2510, 13jca 553 . . . 4 ((𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑋𝑉 ∧ (𝑁 − 2) ∈ ℕ))
2625adantl 481 . . 3 (((⟨𝑉, 𝐸⟩ RegUSGrph 𝐾𝑉 FriendGrph 𝐸) ∧ (𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) → (𝑋𝑉 ∧ (𝑁 − 2) ∈ ℕ))
2715, 16, 17, 18numclwwlkqhash 26627 . . 3 (((⟨𝑉, 𝐸⟩ RegUSGrph 𝐾𝑉 ∈ Fin) ∧ (𝑋𝑉 ∧ (𝑁 − 2) ∈ ℕ)) → (#‘(𝑋𝑄(𝑁 − 2))) = ((𝐾↑(𝑁 − 2)) − (#‘(𝑋𝐹(𝑁 − 2)))))
2824, 26, 27syl2anc 691 . 2 (((⟨𝑉, 𝐸⟩ RegUSGrph 𝐾𝑉 FriendGrph 𝐸) ∧ (𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) → (#‘(𝑋𝑄(𝑁 − 2))) = ((𝐾↑(𝑁 − 2)) − (#‘(𝑋𝐹(𝑁 − 2)))))
298, 21, 283eqtr2d 2650 1 (((⟨𝑉, 𝐸⟩ RegUSGrph 𝐾𝑉 FriendGrph 𝐸) ∧ (𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) → (#‘(𝑋𝐻𝑁)) = ((𝐾↑(𝑁 − 2)) − (#‘(𝑋𝐹(𝑁 − 2)))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  {crab 2900  ⟨cop 4131   class class class wbr 4583   ↦ cmpt 4643  ‘cfv 5804  (class class class)co 6549   ↦ cmpt2 6551  Fincfn 7841  0cc0 9815   + caddc 9818   − cmin 10145  ℕcn 10897  2c2 10947  3c3 10948  ℕ0cn0 11169  ℤ≥cuz 11563  ↑cexp 12722  #chash 12979   lastS clsw 13147   WWalksN cwwlkn 26206   ClWWalksN cclwwlkn 26277   RegUSGrph crusgra 26450   FriendGrph cfrgra 26515 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-disj 4554  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-rp 11709  df-xadd 11823  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-word 13154  df-lsw 13155  df-concat 13156  df-s1 13157  df-substr 13158  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-usgra 25862  df-nbgra 25949  df-wlk 26036  df-wwlk 26207  df-wwlkn 26208  df-clwwlk 26279  df-clwwlkn 26280  df-vdgr 26421  df-rgra 26451  df-rusgra 26452  df-frgra 26516 This theorem is referenced by:  numclwwlk3  26636
 Copyright terms: Public domain W3C validator