Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rusgranumwlkg Structured version   Visualization version   GIF version

Theorem rusgranumwlkg 26485
 Description: In a k-regular graph, the number of walks of a fixed length n from a fixed vertex is k to the power of n. This theorem corresponds to statement 11 in [Huneke] p. 2: "The total number of walks v(0) v(1) ... v(n-2) from a fixed vertex v = v(0) is k^(n-2) as G is k-regular.". This theorem even holds for n=0: then the walk consists only of one vertex v(0), so the number of walks of length n=0 starting with v=v(0) is 1=k^0. Closed form of rusgranumwlk 26484. (Contributed by Alexander van der Vekens, 24-Aug-2018.)
Assertion
Ref Expression
rusgranumwlkg ((⟨𝑉, 𝐸⟩ RegUSGrph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) → (#‘{𝑤 ∈ (𝑉 Walks 𝐸) ∣ ((#‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑃)}) = (𝐾𝑁))
Distinct variable groups:   𝑤,𝐸   𝑤,𝐾   𝑤,𝑁   𝑤,𝑃   𝑤,𝑉

Proof of Theorem rusgranumwlkg
Dummy variables 𝑚 𝑛 𝑝 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3simpc 1053 . . . 4 ((𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0) → (𝑃𝑉𝑁 ∈ ℕ0))
21adantl 481 . . 3 ((⟨𝑉, 𝐸⟩ RegUSGrph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) → (𝑃𝑉𝑁 ∈ ℕ0))
3 eqeq2 2621 . . . . . 6 (𝑚 = 𝑛 → ((#‘(1st𝑝)) = 𝑚 ↔ (#‘(1st𝑝)) = 𝑛))
43rabbidv 3164 . . . . 5 (𝑚 = 𝑛 → {𝑝 ∈ (𝑉 Walks 𝐸) ∣ (#‘(1st𝑝)) = 𝑚} = {𝑝 ∈ (𝑉 Walks 𝐸) ∣ (#‘(1st𝑝)) = 𝑛})
54cbvmptv 4678 . . . 4 (𝑚 ∈ ℕ0 ↦ {𝑝 ∈ (𝑉 Walks 𝐸) ∣ (#‘(1st𝑝)) = 𝑚}) = (𝑛 ∈ ℕ0 ↦ {𝑝 ∈ (𝑉 Walks 𝐸) ∣ (#‘(1st𝑝)) = 𝑛})
6 eqid 2610 . . . 4 (𝑣𝑉, 𝑛 ∈ ℕ0 ↦ (#‘{𝑤 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑝 ∈ (𝑉 Walks 𝐸) ∣ (#‘(1st𝑝)) = 𝑚})‘𝑛) ∣ ((2nd𝑤)‘0) = 𝑣})) = (𝑣𝑉, 𝑛 ∈ ℕ0 ↦ (#‘{𝑤 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑝 ∈ (𝑉 Walks 𝐸) ∣ (#‘(1st𝑝)) = 𝑚})‘𝑛) ∣ ((2nd𝑤)‘0) = 𝑣}))
75, 6rusgranumwlklem3 26478 . . 3 ((𝑃𝑉𝑁 ∈ ℕ0) → (𝑃(𝑣𝑉, 𝑛 ∈ ℕ0 ↦ (#‘{𝑤 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑝 ∈ (𝑉 Walks 𝐸) ∣ (#‘(1st𝑝)) = 𝑚})‘𝑛) ∣ ((2nd𝑤)‘0) = 𝑣}))𝑁) = (#‘{𝑤 ∈ (𝑉 Walks 𝐸) ∣ ((#‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑃)}))
82, 7syl 17 . 2 ((⟨𝑉, 𝐸⟩ RegUSGrph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) → (𝑃(𝑣𝑉, 𝑛 ∈ ℕ0 ↦ (#‘{𝑤 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑝 ∈ (𝑉 Walks 𝐸) ∣ (#‘(1st𝑝)) = 𝑚})‘𝑛) ∣ ((2nd𝑤)‘0) = 𝑣}))𝑁) = (#‘{𝑤 ∈ (𝑉 Walks 𝐸) ∣ ((#‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑃)}))
95, 6rusgranumwlk 26484 . 2 ((⟨𝑉, 𝐸⟩ RegUSGrph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) → (𝑃(𝑣𝑉, 𝑛 ∈ ℕ0 ↦ (#‘{𝑤 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑝 ∈ (𝑉 Walks 𝐸) ∣ (#‘(1st𝑝)) = 𝑚})‘𝑛) ∣ ((2nd𝑤)‘0) = 𝑣}))𝑁) = (𝐾𝑁))
108, 9eqtr3d 2646 1 ((⟨𝑉, 𝐸⟩ RegUSGrph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) → (#‘{𝑤 ∈ (𝑉 Walks 𝐸) ∣ ((#‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑃)}) = (𝐾𝑁))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  {crab 2900  ⟨cop 4131   class class class wbr 4583   ↦ cmpt 4643  ‘cfv 5804  (class class class)co 6549   ↦ cmpt2 6551  1st c1st 7057  2nd c2nd 7058  Fincfn 7841  0cc0 9815  ℕ0cn0 11169  ↑cexp 12722  #chash 12979   Walks cwalk 26026   RegUSGrph crusgra 26450 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-disj 4554  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-rp 11709  df-xadd 11823  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-word 13154  df-lsw 13155  df-concat 13156  df-s1 13157  df-substr 13158  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-usgra 25862  df-nbgra 25949  df-wlk 26036  df-wwlk 26207  df-wwlkn 26208  df-vdgr 26421  df-rgra 26451  df-rusgra 26452 This theorem is referenced by:  rusgranumwwlkg  26486
 Copyright terms: Public domain W3C validator