Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nnsgrpnmnd Structured version   Visualization version   GIF version

Theorem nnsgrpnmnd 41608
Description: The structure of positive integers together with the addition of complex numbers is not a monoid. (Contributed by AV, 4-Feb-2020.)
Hypothesis
Ref Expression
nnsgrp.m 𝑀 = (ℂflds ℕ)
Assertion
Ref Expression
nnsgrpnmnd 𝑀 ∉ Mnd

Proof of Theorem nnsgrpnmnd
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnsscn 10902 . . . 4 ℕ ⊆ ℂ
2 nnsgrp.m . . . . 5 𝑀 = (ℂflds ℕ)
32cnfldsrngbas 41559 . . . 4 (ℕ ⊆ ℂ → ℕ = (Base‘𝑀))
41, 3ax-mp 5 . . 3 ℕ = (Base‘𝑀)
5 nnex 10903 . . . 4 ℕ ∈ V
62cnfldsrngadd 41560 . . . 4 (ℕ ∈ V → + = (+g𝑀))
75, 6ax-mp 5 . . 3 + = (+g𝑀)
84, 7isnmnd 17121 . 2 (∀𝑧 ∈ ℕ ∃𝑥 ∈ ℕ (𝑧 + 𝑥) ≠ 𝑥𝑀 ∉ Mnd)
9 1nn 10908 . . . 4 1 ∈ ℕ
109a1i 11 . . 3 (𝑧 ∈ ℕ → 1 ∈ ℕ)
11 oveq2 6557 . . . . 5 (𝑥 = 1 → (𝑧 + 𝑥) = (𝑧 + 1))
12 id 22 . . . . 5 (𝑥 = 1 → 𝑥 = 1)
1311, 12neeq12d 2843 . . . 4 (𝑥 = 1 → ((𝑧 + 𝑥) ≠ 𝑥 ↔ (𝑧 + 1) ≠ 1))
1413adantl 481 . . 3 ((𝑧 ∈ ℕ ∧ 𝑥 = 1) → ((𝑧 + 𝑥) ≠ 𝑥 ↔ (𝑧 + 1) ≠ 1))
15 nnne0 10930 . . . . 5 (𝑧 ∈ ℕ → 𝑧 ≠ 0)
1615necomd 2837 . . . 4 (𝑧 ∈ ℕ → 0 ≠ 𝑧)
17 1cnd 9935 . . . . . . 7 (𝑧 ∈ ℕ → 1 ∈ ℂ)
18 nncn 10905 . . . . . . 7 (𝑧 ∈ ℕ → 𝑧 ∈ ℂ)
1917, 17, 18subadd2d 10290 . . . . . 6 (𝑧 ∈ ℕ → ((1 − 1) = 𝑧 ↔ (𝑧 + 1) = 1))
20 1m1e0 10966 . . . . . . . 8 (1 − 1) = 0
2120a1i 11 . . . . . . 7 (𝑧 ∈ ℕ → (1 − 1) = 0)
2221eqeq1d 2612 . . . . . 6 (𝑧 ∈ ℕ → ((1 − 1) = 𝑧 ↔ 0 = 𝑧))
2319, 22bitr3d 269 . . . . 5 (𝑧 ∈ ℕ → ((𝑧 + 1) = 1 ↔ 0 = 𝑧))
2423necon3bid 2826 . . . 4 (𝑧 ∈ ℕ → ((𝑧 + 1) ≠ 1 ↔ 0 ≠ 𝑧))
2516, 24mpbird 246 . . 3 (𝑧 ∈ ℕ → (𝑧 + 1) ≠ 1)
2610, 14, 25rspcedvd 3289 . 2 (𝑧 ∈ ℕ → ∃𝑥 ∈ ℕ (𝑧 + 𝑥) ≠ 𝑥)
278, 26mprg 2910 1 𝑀 ∉ Mnd
Colors of variables: wff setvar class
Syntax hints:  wb 195   = wceq 1475  wcel 1977  wne 2780  wnel 2781  wrex 2897  Vcvv 3173  wss 3540  cfv 5804  (class class class)co 6549  cc 9813  0cc0 9815  1c1 9816   + caddc 9818  cmin 10145  cn 10897  Basecbs 15695  s cress 15696  +gcplusg 15768  Mndcmnd 17117  fldccnfld 19567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-addf 9894
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-fz 12198  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-mnd 17118  df-cnfld 19568
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator