Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mgpsumz Structured version   Visualization version   GIF version

Theorem mgpsumz 41934
 Description: If the group sum for the multiplicative group of a unital ring contains a summand/factor that is the zero of the ring, the group sum itself is zero. (Contributed by AV, 29-Dec-2018.)
Hypotheses
Ref Expression
mgpsumunsn.m 𝑀 = (mulGrp‘𝑅)
mgpsumunsn.t · = (.r𝑅)
mgpsumunsn.r (𝜑𝑅 ∈ CRing)
mgpsumunsn.n (𝜑𝑁 ∈ Fin)
mgpsumunsn.i (𝜑𝐼𝑁)
mgpsumunsn.a ((𝜑𝑘𝑁) → 𝐴 ∈ (Base‘𝑅))
mgpsumz.z 0 = (0g𝑅)
mgpsumz.0 (𝑘 = 𝐼𝐴 = 0 )
Assertion
Ref Expression
mgpsumz (𝜑 → (𝑀 Σg (𝑘𝑁𝐴)) = 0 )
Distinct variable groups:   𝑘,𝐼   𝑘,𝑀   𝑘,𝑁   𝑅,𝑘   𝜑,𝑘   0 ,𝑘
Allowed substitution hints:   𝐴(𝑘)   · (𝑘)

Proof of Theorem mgpsumz
StepHypRef Expression
1 mgpsumunsn.m . . 3 𝑀 = (mulGrp‘𝑅)
2 mgpsumunsn.t . . 3 · = (.r𝑅)
3 mgpsumunsn.r . . 3 (𝜑𝑅 ∈ CRing)
4 mgpsumunsn.n . . 3 (𝜑𝑁 ∈ Fin)
5 mgpsumunsn.i . . 3 (𝜑𝐼𝑁)
6 mgpsumunsn.a . . 3 ((𝜑𝑘𝑁) → 𝐴 ∈ (Base‘𝑅))
7 crngring 18381 . . . . . 6 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
8 ringmnd 18379 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
97, 8syl 17 . . . . 5 (𝑅 ∈ CRing → 𝑅 ∈ Mnd)
103, 9syl 17 . . . 4 (𝜑𝑅 ∈ Mnd)
11 eqid 2610 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
12 mgpsumz.z . . . . 5 0 = (0g𝑅)
1311, 12mndidcl 17131 . . . 4 (𝑅 ∈ Mnd → 0 ∈ (Base‘𝑅))
1410, 13syl 17 . . 3 (𝜑0 ∈ (Base‘𝑅))
15 mgpsumz.0 . . 3 (𝑘 = 𝐼𝐴 = 0 )
161, 2, 3, 4, 5, 6, 14, 15mgpsumunsn 41933 . 2 (𝜑 → (𝑀 Σg (𝑘𝑁𝐴)) = ((𝑀 Σg (𝑘 ∈ (𝑁 ∖ {𝐼}) ↦ 𝐴)) · 0 ))
173, 7syl 17 . . 3 (𝜑𝑅 ∈ Ring)
181, 11mgpbas 18318 . . . 4 (Base‘𝑅) = (Base‘𝑀)
191crngmgp 18378 . . . . 5 (𝑅 ∈ CRing → 𝑀 ∈ CMnd)
203, 19syl 17 . . . 4 (𝜑𝑀 ∈ CMnd)
21 diffi 8077 . . . . 5 (𝑁 ∈ Fin → (𝑁 ∖ {𝐼}) ∈ Fin)
224, 21syl 17 . . . 4 (𝜑 → (𝑁 ∖ {𝐼}) ∈ Fin)
23 eldifi 3694 . . . . . 6 (𝑘 ∈ (𝑁 ∖ {𝐼}) → 𝑘𝑁)
2423, 6sylan2 490 . . . . 5 ((𝜑𝑘 ∈ (𝑁 ∖ {𝐼})) → 𝐴 ∈ (Base‘𝑅))
2524ralrimiva 2949 . . . 4 (𝜑 → ∀𝑘 ∈ (𝑁 ∖ {𝐼})𝐴 ∈ (Base‘𝑅))
2618, 20, 22, 25gsummptcl 18189 . . 3 (𝜑 → (𝑀 Σg (𝑘 ∈ (𝑁 ∖ {𝐼}) ↦ 𝐴)) ∈ (Base‘𝑅))
2711, 2, 12ringrz 18411 . . 3 ((𝑅 ∈ Ring ∧ (𝑀 Σg (𝑘 ∈ (𝑁 ∖ {𝐼}) ↦ 𝐴)) ∈ (Base‘𝑅)) → ((𝑀 Σg (𝑘 ∈ (𝑁 ∖ {𝐼}) ↦ 𝐴)) · 0 ) = 0 )
2817, 26, 27syl2anc 691 . 2 (𝜑 → ((𝑀 Σg (𝑘 ∈ (𝑁 ∖ {𝐼}) ↦ 𝐴)) · 0 ) = 0 )
2916, 28eqtrd 2644 1 (𝜑 → (𝑀 Σg (𝑘𝑁𝐴)) = 0 )
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977   ∖ cdif 3537  {csn 4125   ↦ cmpt 4643  ‘cfv 5804  (class class class)co 6549  Fincfn 7841  Basecbs 15695  .rcmulr 15769  0gc0g 15923   Σg cgsu 15924  Mndcmnd 17117  CMndccmn 18016  mulGrpcmgp 18312  Ringcrg 18370  CRingccrg 18371 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-seq 12664  df-hash 12980  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-0g 15925  df-gsum 15926  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-grp 17248  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-mgp 18313  df-ring 18372  df-cring 18373 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator