Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdrvallem2 Structured version   Visualization version   GIF version

Theorem mapdrvallem2 35952
Description: Lemma for mapdrval 35954. TODO: very long antecedents are dragged through proof in some places - see if it shortens proof to remove unused conjuncts. (Contributed by NM, 2-Feb-2015.)
Hypotheses
Ref Expression
mapdrval.h 𝐻 = (LHyp‘𝐾)
mapdrval.o 𝑂 = ((ocH‘𝐾)‘𝑊)
mapdrval.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdrval.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdrval.s 𝑆 = (LSubSp‘𝑈)
mapdrval.f 𝐹 = (LFnl‘𝑈)
mapdrval.l 𝐿 = (LKer‘𝑈)
mapdrval.d 𝐷 = (LDual‘𝑈)
mapdrval.t 𝑇 = (LSubSp‘𝐷)
mapdrval.c 𝐶 = {𝑔𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔)}
mapdrval.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdrval.r (𝜑𝑅𝑇)
mapdrval.e (𝜑𝑅𝐶)
mapdrval.q 𝑄 = 𝑅 (𝑂‘(𝐿))
mapdrval.v 𝑉 = (Base‘𝑈)
mapdrvallem2.a 𝐴 = (LSAtoms‘𝑈)
mapdrvallem2.n 𝑁 = (LSpan‘𝑈)
mapdrvallem2.z 0 = (0g𝑈)
mapdrvallem2.y 𝑌 = (0g𝐷)
Assertion
Ref Expression
mapdrvallem2 (𝜑 → {𝑓𝐶 ∣ (𝑂‘(𝐿𝑓)) ⊆ 𝑄} ⊆ 𝑅)
Distinct variable groups:   𝐶,𝑓   𝑓,𝑔,𝐹   𝑓,𝐾   𝑔,,𝐿   𝑔,𝑂,   𝑄,𝑓,   𝑅,𝑓,   𝑈,𝑔   𝑓,𝑊   𝜑,𝑓   𝐶,   ,𝑁   𝑄,   𝑈,   ,𝑉   ,𝑌   0 ,   𝜑,
Allowed substitution hints:   𝜑(𝑔)   𝐴(𝑓,𝑔,)   𝐶(𝑔)   𝐷(𝑓,𝑔,)   𝑄(𝑔)   𝑅(𝑔)   𝑆(𝑓,𝑔,)   𝑇(𝑓,𝑔,)   𝑈(𝑓)   𝐹()   𝐻(𝑓,𝑔,)   𝐾(𝑔,)   𝐿(𝑓)   𝑀(𝑓,𝑔,)   𝑁(𝑓,𝑔)   𝑂(𝑓)   𝑉(𝑓,𝑔)   𝑊(𝑔,)   𝑌(𝑓,𝑔)   0 (𝑓,𝑔)

Proof of Theorem mapdrvallem2
Dummy variables 𝑟 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2676 . . 3 (𝑓 = 𝑌 → (𝑓𝑅𝑌𝑅))
2 mapdrval.h . . . . 5 𝐻 = (LHyp‘𝐾)
3 mapdrval.o . . . . 5 𝑂 = ((ocH‘𝐾)‘𝑊)
4 mapdrval.u . . . . 5 𝑈 = ((DVecH‘𝐾)‘𝑊)
5 mapdrval.v . . . . 5 𝑉 = (Base‘𝑈)
6 mapdrvallem2.n . . . . 5 𝑁 = (LSpan‘𝑈)
7 mapdrvallem2.z . . . . 5 0 = (0g𝑈)
8 mapdrval.f . . . . 5 𝐹 = (LFnl‘𝑈)
9 mapdrval.l . . . . 5 𝐿 = (LKer‘𝑈)
10 mapdrval.d . . . . 5 𝐷 = (LDual‘𝑈)
11 mapdrvallem2.y . . . . 5 𝑌 = (0g𝐷)
12 mapdrval.c . . . . 5 𝐶 = {𝑔𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔)}
13 mapdrval.k . . . . . . 7 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
14133ad2ant1 1075 . . . . . 6 ((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) → (𝐾 ∈ HL ∧ 𝑊𝐻))
1514adantr 480 . . . . 5 (((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) → (𝐾 ∈ HL ∧ 𝑊𝐻))
16 simpl2 1058 . . . . . 6 (((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) → 𝑓𝐶)
17 simpr 476 . . . . . 6 (((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) → 𝑓𝑌)
18 eldifsn 4260 . . . . . 6 (𝑓 ∈ (𝐶 ∖ {𝑌}) ↔ (𝑓𝐶𝑓𝑌))
1916, 17, 18sylanbrc 695 . . . . 5 (((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) → 𝑓 ∈ (𝐶 ∖ {𝑌}))
202, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 19lcfl8b 35811 . . . 4 (((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) → ∃𝑥 ∈ (𝑉 ∖ { 0 })(𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥}))
21 simp1l3 1149 . . . . . . . . . . 11 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) → (𝑂‘(𝐿𝑓)) ⊆ 𝑄)
22 eqimss2 3621 . . . . . . . . . . . . 13 ((𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥}) → (𝑁‘{𝑥}) ⊆ (𝑂‘(𝐿𝑓)))
23223ad2ant3 1077 . . . . . . . . . . . 12 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) → (𝑁‘{𝑥}) ⊆ (𝑂‘(𝐿𝑓)))
24 mapdrval.s . . . . . . . . . . . . 13 𝑆 = (LSubSp‘𝑈)
252, 4, 13dvhlmod 35417 . . . . . . . . . . . . . . . 16 (𝜑𝑈 ∈ LMod)
26253ad2ant1 1075 . . . . . . . . . . . . . . 15 ((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) → 𝑈 ∈ LMod)
2726adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) → 𝑈 ∈ LMod)
28273ad2ant1 1075 . . . . . . . . . . . . 13 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) → 𝑈 ∈ LMod)
29153ad2ant1 1075 . . . . . . . . . . . . . 14 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) → (𝐾 ∈ HL ∧ 𝑊𝐻))
3012lcfl1lem 35798 . . . . . . . . . . . . . . . . . . 19 (𝑓𝐶 ↔ (𝑓𝐹 ∧ (𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓)))
3130simplbi 475 . . . . . . . . . . . . . . . . . 18 (𝑓𝐶𝑓𝐹)
32313ad2ant2 1076 . . . . . . . . . . . . . . . . 17 ((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) → 𝑓𝐹)
3332adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) → 𝑓𝐹)
34333ad2ant1 1075 . . . . . . . . . . . . . . 15 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) → 𝑓𝐹)
355, 8, 9, 28, 34lkrssv 33401 . . . . . . . . . . . . . 14 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) → (𝐿𝑓) ⊆ 𝑉)
362, 4, 5, 24, 3dochlss 35661 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐿𝑓) ⊆ 𝑉) → (𝑂‘(𝐿𝑓)) ∈ 𝑆)
3729, 35, 36syl2anc 691 . . . . . . . . . . . . 13 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) → (𝑂‘(𝐿𝑓)) ∈ 𝑆)
38 eldifi 3694 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝑉 ∖ { 0 }) → 𝑥𝑉)
39383ad2ant2 1076 . . . . . . . . . . . . 13 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) → 𝑥𝑉)
405, 24, 6, 28, 37, 39lspsnel5 18816 . . . . . . . . . . . 12 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) → (𝑥 ∈ (𝑂‘(𝐿𝑓)) ↔ (𝑁‘{𝑥}) ⊆ (𝑂‘(𝐿𝑓))))
4123, 40mpbird 246 . . . . . . . . . . 11 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) → 𝑥 ∈ (𝑂‘(𝐿𝑓)))
4221, 41sseldd 3569 . . . . . . . . . 10 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) → 𝑥𝑄)
43 mapdrval.q . . . . . . . . . 10 𝑄 = 𝑅 (𝑂‘(𝐿))
4442, 43syl6eleq 2698 . . . . . . . . 9 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) → 𝑥 𝑅 (𝑂‘(𝐿)))
45 eliun 4460 . . . . . . . . 9 (𝑥 𝑅 (𝑂‘(𝐿)) ↔ ∃𝑅 𝑥 ∈ (𝑂‘(𝐿)))
4644, 45sylib 207 . . . . . . . 8 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) → ∃𝑅 𝑥 ∈ (𝑂‘(𝐿)))
47 eqid 2610 . . . . . . . . . . 11 (Scalar‘𝑈) = (Scalar‘𝑈)
48 eqid 2610 . . . . . . . . . . 11 (Base‘(Scalar‘𝑈)) = (Base‘(Scalar‘𝑈))
49 eqid 2610 . . . . . . . . . . 11 ( ·𝑠𝐷) = ( ·𝑠𝐷)
502, 4, 13dvhlvec 35416 . . . . . . . . . . . . . . 15 (𝜑𝑈 ∈ LVec)
51503ad2ant1 1075 . . . . . . . . . . . . . 14 ((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) → 𝑈 ∈ LVec)
5251adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) → 𝑈 ∈ LVec)
53523ad2ant1 1075 . . . . . . . . . . . 12 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) → 𝑈 ∈ LVec)
5453ad2antrr 758 . . . . . . . . . . 11 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → 𝑈 ∈ LVec)
55 simpr 476 . . . . . . . . . . . . 13 (((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) → 𝑅)
56 simp1l1 1147 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) → 𝜑)
5756adantr 480 . . . . . . . . . . . . . . . 16 (((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) → 𝜑)
58 mapdrval.e . . . . . . . . . . . . . . . 16 (𝜑𝑅𝐶)
5957, 58syl 17 . . . . . . . . . . . . . . 15 (((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) → 𝑅𝐶)
6059sseld 3567 . . . . . . . . . . . . . 14 (((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) → (𝑅𝐶))
6112lcfl1lem 35798 . . . . . . . . . . . . . . 15 (𝐶 ↔ (𝐹 ∧ (𝑂‘(𝑂‘(𝐿))) = (𝐿)))
6261simplbi 475 . . . . . . . . . . . . . 14 (𝐶𝐹)
6360, 62syl6 34 . . . . . . . . . . . . 13 (((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) → (𝑅𝐹))
6455, 63mpd 15 . . . . . . . . . . . 12 (((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) → 𝐹)
6564adantr 480 . . . . . . . . . . 11 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → 𝐹)
6634ad2antrr 758 . . . . . . . . . . 11 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → 𝑓𝐹)
67 simpll3 1095 . . . . . . . . . . . . 13 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥}))
6828ad2antrr 758 . . . . . . . . . . . . . . 15 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → 𝑈 ∈ LMod)
6929ad2antrr 758 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
705, 8, 9, 68, 65lkrssv 33401 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → (𝐿) ⊆ 𝑉)
712, 4, 5, 24, 3dochlss 35661 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐿) ⊆ 𝑉) → (𝑂‘(𝐿)) ∈ 𝑆)
7269, 70, 71syl2anc 691 . . . . . . . . . . . . . . 15 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → (𝑂‘(𝐿)) ∈ 𝑆)
73 simpr 476 . . . . . . . . . . . . . . 15 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → 𝑥 ∈ (𝑂‘(𝐿)))
7424, 6, 68, 72, 73lspsnel5a 18817 . . . . . . . . . . . . . 14 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → (𝑁‘{𝑥}) ⊆ (𝑂‘(𝐿)))
75 mapdrvallem2.a . . . . . . . . . . . . . . 15 𝐴 = (LSAtoms‘𝑈)
76 simpll2 1094 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → 𝑥 ∈ (𝑉 ∖ { 0 }))
775, 6, 7, 75, 68, 76lsatlspsn 33298 . . . . . . . . . . . . . . 15 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → (𝑁‘{𝑥}) ∈ 𝐴)
782, 3, 4, 7, 75, 8, 9, 69, 65dochsat0 35764 . . . . . . . . . . . . . . 15 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → ((𝑂‘(𝐿)) ∈ 𝐴 ∨ (𝑂‘(𝐿)) = { 0 }))
797, 75, 54, 77, 78lsatcmp2 33309 . . . . . . . . . . . . . 14 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → ((𝑁‘{𝑥}) ⊆ (𝑂‘(𝐿)) ↔ (𝑁‘{𝑥}) = (𝑂‘(𝐿))))
8074, 79mpbid 221 . . . . . . . . . . . . 13 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → (𝑁‘{𝑥}) = (𝑂‘(𝐿)))
8167, 80eqtr2d 2645 . . . . . . . . . . . 12 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → (𝑂‘(𝐿)) = (𝑂‘(𝐿𝑓)))
82 eqid 2610 . . . . . . . . . . . . 13 ((DIsoH‘𝐾)‘𝑊) = ((DIsoH‘𝐾)‘𝑊)
8356, 58syl 17 . . . . . . . . . . . . . . . 16 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) → 𝑅𝐶)
8483sselda 3568 . . . . . . . . . . . . . . 15 (((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) → 𝐶)
8584adantr 480 . . . . . . . . . . . . . 14 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → 𝐶)
862, 82, 3, 4, 8, 9, 12, 69, 65lcfl5 35803 . . . . . . . . . . . . . 14 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → (𝐶 ↔ (𝐿) ∈ ran ((DIsoH‘𝐾)‘𝑊)))
8785, 86mpbid 221 . . . . . . . . . . . . 13 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → (𝐿) ∈ ran ((DIsoH‘𝐾)‘𝑊))
88 simp1l2 1148 . . . . . . . . . . . . . . 15 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) → 𝑓𝐶)
8988ad2antrr 758 . . . . . . . . . . . . . 14 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → 𝑓𝐶)
902, 82, 3, 4, 8, 9, 12, 69, 66lcfl5 35803 . . . . . . . . . . . . . 14 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → (𝑓𝐶 ↔ (𝐿𝑓) ∈ ran ((DIsoH‘𝐾)‘𝑊)))
9189, 90mpbid 221 . . . . . . . . . . . . 13 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → (𝐿𝑓) ∈ ran ((DIsoH‘𝐾)‘𝑊))
922, 82, 3, 69, 87, 91doch11 35680 . . . . . . . . . . . 12 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → ((𝑂‘(𝐿)) = (𝑂‘(𝐿𝑓)) ↔ (𝐿) = (𝐿𝑓)))
9381, 92mpbid 221 . . . . . . . . . . 11 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → (𝐿) = (𝐿𝑓))
9447, 48, 8, 9, 10, 49, 54, 65, 66, 93eqlkr4 33470 . . . . . . . . . 10 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → ∃𝑟 ∈ (Base‘(Scalar‘𝑈))𝑓 = (𝑟( ·𝑠𝐷)))
9594ex 449 . . . . . . . . 9 (((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) → (𝑥 ∈ (𝑂‘(𝐿)) → ∃𝑟 ∈ (Base‘(Scalar‘𝑈))𝑓 = (𝑟( ·𝑠𝐷))))
9695reximdva 3000 . . . . . . . 8 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) → (∃𝑅 𝑥 ∈ (𝑂‘(𝐿)) → ∃𝑅𝑟 ∈ (Base‘(Scalar‘𝑈))𝑓 = (𝑟( ·𝑠𝐷))))
9746, 96mpd 15 . . . . . . 7 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) → ∃𝑅𝑟 ∈ (Base‘(Scalar‘𝑈))𝑓 = (𝑟( ·𝑠𝐷)))
98 eleq1 2676 . . . . . . . . . 10 (𝑓 = (𝑟( ·𝑠𝐷)) → (𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅))
9998reximi 2994 . . . . . . . . 9 (∃𝑟 ∈ (Base‘(Scalar‘𝑈))𝑓 = (𝑟( ·𝑠𝐷)) → ∃𝑟 ∈ (Base‘(Scalar‘𝑈))(𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅))
10099reximi 2994 . . . . . . . 8 (∃𝑅𝑟 ∈ (Base‘(Scalar‘𝑈))𝑓 = (𝑟( ·𝑠𝐷)) → ∃𝑅𝑟 ∈ (Base‘(Scalar‘𝑈))(𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅))
101 rexcom 3080 . . . . . . . . 9 (∃𝑅𝑟 ∈ (Base‘(Scalar‘𝑈))(𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅) ↔ ∃𝑟 ∈ (Base‘(Scalar‘𝑈))∃𝑅 (𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅))
102 df-rex 2902 . . . . . . . . . 10 (∃𝑅 (𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅) ↔ ∃(𝑅 ∧ (𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅)))
103102rexbii 3023 . . . . . . . . 9 (∃𝑟 ∈ (Base‘(Scalar‘𝑈))∃𝑅 (𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅) ↔ ∃𝑟 ∈ (Base‘(Scalar‘𝑈))∃(𝑅 ∧ (𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅)))
104101, 103bitri 263 . . . . . . . 8 (∃𝑅𝑟 ∈ (Base‘(Scalar‘𝑈))(𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅) ↔ ∃𝑟 ∈ (Base‘(Scalar‘𝑈))∃(𝑅 ∧ (𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅)))
105100, 104sylib 207 . . . . . . 7 (∃𝑅𝑟 ∈ (Base‘(Scalar‘𝑈))𝑓 = (𝑟( ·𝑠𝐷)) → ∃𝑟 ∈ (Base‘(Scalar‘𝑈))∃(𝑅 ∧ (𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅)))
10697, 105syl 17 . . . . . 6 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) → ∃𝑟 ∈ (Base‘(Scalar‘𝑈))∃(𝑅 ∧ (𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅)))
107 mapdrval.t . . . . . . . . . . . 12 𝑇 = (LSubSp‘𝐷)
10827ad2antrr 758 . . . . . . . . . . . 12 (((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑈))) ∧ (𝑅 ∧ (𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅))) → 𝑈 ∈ LMod)
109 mapdrval.r . . . . . . . . . . . . . . 15 (𝜑𝑅𝑇)
1101093ad2ant1 1075 . . . . . . . . . . . . . 14 ((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) → 𝑅𝑇)
111110adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) → 𝑅𝑇)
112111ad2antrr 758 . . . . . . . . . . . 12 (((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑈))) ∧ (𝑅 ∧ (𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅))) → 𝑅𝑇)
113 simplr 788 . . . . . . . . . . . 12 (((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑈))) ∧ (𝑅 ∧ (𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅))) → 𝑟 ∈ (Base‘(Scalar‘𝑈)))
114 simprl 790 . . . . . . . . . . . 12 (((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑈))) ∧ (𝑅 ∧ (𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅))) → 𝑅)
11547, 48, 10, 49, 107, 108, 112, 113, 114ldualssvscl 33463 . . . . . . . . . . 11 (((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑈))) ∧ (𝑅 ∧ (𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅))) → (𝑟( ·𝑠𝐷)) ∈ 𝑅)
116 biimpr 209 . . . . . . . . . . . 12 ((𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅) → ((𝑟( ·𝑠𝐷)) ∈ 𝑅𝑓𝑅))
117116ad2antll 761 . . . . . . . . . . 11 (((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑈))) ∧ (𝑅 ∧ (𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅))) → ((𝑟( ·𝑠𝐷)) ∈ 𝑅𝑓𝑅))
118115, 117mpd 15 . . . . . . . . . 10 (((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑈))) ∧ (𝑅 ∧ (𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅))) → 𝑓𝑅)
119118ex 449 . . . . . . . . 9 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑈))) → ((𝑅 ∧ (𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅)) → 𝑓𝑅))
120119exlimdv 1848 . . . . . . . 8 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑈))) → (∃(𝑅 ∧ (𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅)) → 𝑓𝑅))
121120rexlimdva 3013 . . . . . . 7 (((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) → (∃𝑟 ∈ (Base‘(Scalar‘𝑈))∃(𝑅 ∧ (𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅)) → 𝑓𝑅))
1221213ad2ant1 1075 . . . . . 6 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) → (∃𝑟 ∈ (Base‘(Scalar‘𝑈))∃(𝑅 ∧ (𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅)) → 𝑓𝑅))
123106, 122mpd 15 . . . . 5 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) → 𝑓𝑅)
124123rexlimdv3a 3015 . . . 4 (((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) → (∃𝑥 ∈ (𝑉 ∖ { 0 })(𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥}) → 𝑓𝑅))
12520, 124mpd 15 . . 3 (((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) → 𝑓𝑅)
12610, 25lduallmod 33458 . . . . 5 (𝜑𝐷 ∈ LMod)
1271263ad2ant1 1075 . . . 4 ((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) → 𝐷 ∈ LMod)
12811, 107lss0cl 18768 . . . 4 ((𝐷 ∈ LMod ∧ 𝑅𝑇) → 𝑌𝑅)
129127, 110, 128syl2anc 691 . . 3 ((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) → 𝑌𝑅)
1301, 125, 129pm2.61ne 2867 . 2 ((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) → 𝑓𝑅)
131130rabssdv 3645 1 (𝜑 → {𝑓𝐶 ∣ (𝑂‘(𝐿𝑓)) ⊆ 𝑄} ⊆ 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wex 1695  wcel 1977  wne 2780  wrex 2897  {crab 2900  cdif 3537  wss 3540  {csn 4125   ciun 4455  ran crn 5039  cfv 5804  (class class class)co 6549  Basecbs 15695  Scalarcsca 15771   ·𝑠 cvsca 15772  0gc0g 15923  LModclmod 18686  LSubSpclss 18753  LSpanclspn 18792  LVecclvec 18923  LSAtomsclsa 33279  LFnlclfn 33362  LKerclk 33390  LDualcld 33428  HLchlt 33655  LHypclh 34288  DVecHcdvh 35385  DIsoHcdih 35535  ocHcoch 35654  mapdcmpd 35931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-riotaBAD 33257
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-tpos 7239  df-undef 7286  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-sca 15784  df-vsca 15785  df-0g 15925  df-preset 16751  df-poset 16769  df-plt 16781  df-lub 16797  df-glb 16798  df-join 16799  df-meet 16800  df-p0 16862  df-p1 16863  df-lat 16869  df-clat 16931  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-grp 17248  df-minusg 17249  df-sbg 17250  df-subg 17414  df-cntz 17573  df-lsm 17874  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-oppr 18446  df-dvdsr 18464  df-unit 18465  df-invr 18495  df-dvr 18506  df-drng 18572  df-lmod 18688  df-lss 18754  df-lsp 18793  df-lvec 18924  df-lsatoms 33281  df-lshyp 33282  df-lfl 33363  df-lkr 33391  df-ldual 33429  df-oposet 33481  df-ol 33483  df-oml 33484  df-covers 33571  df-ats 33572  df-atl 33603  df-cvlat 33627  df-hlat 33656  df-llines 33802  df-lplanes 33803  df-lvols 33804  df-lines 33805  df-psubsp 33807  df-pmap 33808  df-padd 34100  df-lhyp 34292  df-laut 34293  df-ldil 34408  df-ltrn 34409  df-trl 34464  df-tgrp 35049  df-tendo 35061  df-edring 35063  df-dveca 35309  df-disoa 35336  df-dvech 35386  df-dib 35446  df-dic 35480  df-dih 35536  df-doch 35655  df-djh 35702
This theorem is referenced by:  mapdrvallem3  35953
  Copyright terms: Public domain W3C validator