Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdrvallem2 Structured version   Unicode version

Theorem mapdrvallem2 35609
Description: Lemma for mapdrval 35611. TODO: very long antecedents are dragged through proof in some places - see if it shortens proof to remove unused conjuncts. (Contributed by NM, 2-Feb-2015.)
Hypotheses
Ref Expression
mapdrval.h  |-  H  =  ( LHyp `  K
)
mapdrval.o  |-  O  =  ( ( ocH `  K
) `  W )
mapdrval.m  |-  M  =  ( (mapd `  K
) `  W )
mapdrval.u  |-  U  =  ( ( DVecH `  K
) `  W )
mapdrval.s  |-  S  =  ( LSubSp `  U )
mapdrval.f  |-  F  =  (LFnl `  U )
mapdrval.l  |-  L  =  (LKer `  U )
mapdrval.d  |-  D  =  (LDual `  U )
mapdrval.t  |-  T  =  ( LSubSp `  D )
mapdrval.c  |-  C  =  { g  e.  F  |  ( O `  ( O `  ( L `
 g ) ) )  =  ( L `
 g ) }
mapdrval.k  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
mapdrval.r  |-  ( ph  ->  R  e.  T )
mapdrval.e  |-  ( ph  ->  R  C_  C )
mapdrval.q  |-  Q  = 
U_ h  e.  R  ( O `  ( L `
 h ) )
mapdrval.v  |-  V  =  ( Base `  U
)
mapdrvallem2.a  |-  A  =  (LSAtoms `  U )
mapdrvallem2.n  |-  N  =  ( LSpan `  U )
mapdrvallem2.z  |-  .0.  =  ( 0g `  U )
mapdrvallem2.y  |-  Y  =  ( 0g `  D
)
Assertion
Ref Expression
mapdrvallem2  |-  ( ph  ->  { f  e.  C  |  ( O `  ( L `  f ) )  C_  Q }  C_  R )
Distinct variable groups:    C, f    f, g, F    f, K    g, h, L    g, O, h    Q, f, h    R, f, h    U, g    f, W    ph, f    C, h   
h, N    Q, h    U, h    h, V    h, Y    .0. , h    ph, h
Allowed substitution hints:    ph( g)    A( f, g, h)    C( g)    D( f, g, h)    Q( g)    R( g)    S( f, g, h)    T( f,
g, h)    U( f)    F( h)    H( f, g, h)    K( g, h)    L( f)    M( f, g, h)    N( f, g)    O( f)    V( f, g)    W( g, h)    Y( f, g)    .0. ( f,
g)

Proof of Theorem mapdrvallem2
Dummy variables  r  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2524 . . 3  |-  ( f  =  Y  ->  (
f  e.  R  <->  Y  e.  R ) )
2 mapdrval.h . . . . 5  |-  H  =  ( LHyp `  K
)
3 mapdrval.o . . . . 5  |-  O  =  ( ( ocH `  K
) `  W )
4 mapdrval.u . . . . 5  |-  U  =  ( ( DVecH `  K
) `  W )
5 mapdrval.v . . . . 5  |-  V  =  ( Base `  U
)
6 mapdrvallem2.n . . . . 5  |-  N  =  ( LSpan `  U )
7 mapdrvallem2.z . . . . 5  |-  .0.  =  ( 0g `  U )
8 mapdrval.f . . . . 5  |-  F  =  (LFnl `  U )
9 mapdrval.l . . . . 5  |-  L  =  (LKer `  U )
10 mapdrval.d . . . . 5  |-  D  =  (LDual `  U )
11 mapdrvallem2.y . . . . 5  |-  Y  =  ( 0g `  D
)
12 mapdrval.c . . . . 5  |-  C  =  { g  e.  F  |  ( O `  ( O `  ( L `
 g ) ) )  =  ( L `
 g ) }
13 mapdrval.k . . . . . . 7  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
14133ad2ant1 1009 . . . . . 6  |-  ( (
ph  /\  f  e.  C  /\  ( O `  ( L `  f ) )  C_  Q )  ->  ( K  e.  HL  /\  W  e.  H ) )
1514adantr 465 . . . . 5  |-  ( ( ( ph  /\  f  e.  C  /\  ( O `  ( L `  f ) )  C_  Q )  /\  f  =/=  Y )  ->  ( K  e.  HL  /\  W  e.  H ) )
16 simpl2 992 . . . . . 6  |-  ( ( ( ph  /\  f  e.  C  /\  ( O `  ( L `  f ) )  C_  Q )  /\  f  =/=  Y )  ->  f  e.  C )
17 simpr 461 . . . . . 6  |-  ( ( ( ph  /\  f  e.  C  /\  ( O `  ( L `  f ) )  C_  Q )  /\  f  =/=  Y )  ->  f  =/=  Y )
18 eldifsn 4103 . . . . . 6  |-  ( f  e.  ( C  \  { Y } )  <->  ( f  e.  C  /\  f  =/=  Y ) )
1916, 17, 18sylanbrc 664 . . . . 5  |-  ( ( ( ph  /\  f  e.  C  /\  ( O `  ( L `  f ) )  C_  Q )  /\  f  =/=  Y )  ->  f  e.  ( C  \  { Y } ) )
202, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 19lcfl8b 35468 . . . 4  |-  ( ( ( ph  /\  f  e.  C  /\  ( O `  ( L `  f ) )  C_  Q )  /\  f  =/=  Y )  ->  E. x  e.  ( V  \  {  .0.  } ) ( O `
 ( L `  f ) )  =  ( N `  {
x } ) )
21 simp1l3 1083 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  f  e.  C  /\  ( O `  ( L `
 f ) ) 
C_  Q )  /\  f  =/=  Y )  /\  x  e.  ( V  \  {  .0.  } )  /\  ( O `  ( L `  f ) )  =  ( N `
 { x }
) )  ->  ( O `  ( L `  f ) )  C_  Q )
22 eqimss2 3512 . . . . . . . . . . . . 13  |-  ( ( O `  ( L `
 f ) )  =  ( N `  { x } )  ->  ( N `  { x } ) 
C_  ( O `  ( L `  f ) ) )
23223ad2ant3 1011 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  f  e.  C  /\  ( O `  ( L `
 f ) ) 
C_  Q )  /\  f  =/=  Y )  /\  x  e.  ( V  \  {  .0.  } )  /\  ( O `  ( L `  f ) )  =  ( N `
 { x }
) )  ->  ( N `  { x } )  C_  ( O `  ( L `  f ) ) )
24 mapdrval.s . . . . . . . . . . . . 13  |-  S  =  ( LSubSp `  U )
252, 4, 13dvhlmod 35074 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  U  e.  LMod )
26253ad2ant1 1009 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  f  e.  C  /\  ( O `  ( L `  f ) )  C_  Q )  ->  U  e.  LMod )
2726adantr 465 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  f  e.  C  /\  ( O `  ( L `  f ) )  C_  Q )  /\  f  =/=  Y )  ->  U  e.  LMod )
28273ad2ant1 1009 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  f  e.  C  /\  ( O `  ( L `
 f ) ) 
C_  Q )  /\  f  =/=  Y )  /\  x  e.  ( V  \  {  .0.  } )  /\  ( O `  ( L `  f ) )  =  ( N `
 { x }
) )  ->  U  e.  LMod )
29153ad2ant1 1009 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  f  e.  C  /\  ( O `  ( L `
 f ) ) 
C_  Q )  /\  f  =/=  Y )  /\  x  e.  ( V  \  {  .0.  } )  /\  ( O `  ( L `  f ) )  =  ( N `
 { x }
) )  ->  ( K  e.  HL  /\  W  e.  H ) )
3012lcfl1lem 35455 . . . . . . . . . . . . . . . . . . 19  |-  ( f  e.  C  <->  ( f  e.  F  /\  ( O `  ( O `  ( L `  f
) ) )  =  ( L `  f
) ) )
3130simplbi 460 . . . . . . . . . . . . . . . . . 18  |-  ( f  e.  C  ->  f  e.  F )
32313ad2ant2 1010 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  f  e.  C  /\  ( O `  ( L `  f ) )  C_  Q )  ->  f  e.  F )
3332adantr 465 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  f  e.  C  /\  ( O `  ( L `  f ) )  C_  Q )  /\  f  =/=  Y )  ->  f  e.  F )
34333ad2ant1 1009 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  f  e.  C  /\  ( O `  ( L `
 f ) ) 
C_  Q )  /\  f  =/=  Y )  /\  x  e.  ( V  \  {  .0.  } )  /\  ( O `  ( L `  f ) )  =  ( N `
 { x }
) )  ->  f  e.  F )
355, 8, 9, 28, 34lkrssv 33060 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  f  e.  C  /\  ( O `  ( L `
 f ) ) 
C_  Q )  /\  f  =/=  Y )  /\  x  e.  ( V  \  {  .0.  } )  /\  ( O `  ( L `  f ) )  =  ( N `
 { x }
) )  ->  ( L `  f )  C_  V )
362, 4, 5, 24, 3dochlss 35318 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( L `  f )  C_  V
)  ->  ( O `  ( L `  f
) )  e.  S
)
3729, 35, 36syl2anc 661 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  f  e.  C  /\  ( O `  ( L `
 f ) ) 
C_  Q )  /\  f  =/=  Y )  /\  x  e.  ( V  \  {  .0.  } )  /\  ( O `  ( L `  f ) )  =  ( N `
 { x }
) )  ->  ( O `  ( L `  f ) )  e.  S )
38 eldifi 3581 . . . . . . . . . . . . . 14  |-  ( x  e.  ( V  \  {  .0.  } )  ->  x  e.  V )
39383ad2ant2 1010 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  f  e.  C  /\  ( O `  ( L `
 f ) ) 
C_  Q )  /\  f  =/=  Y )  /\  x  e.  ( V  \  {  .0.  } )  /\  ( O `  ( L `  f ) )  =  ( N `
 { x }
) )  ->  x  e.  V )
405, 24, 6, 28, 37, 39lspsnel5 17194 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  f  e.  C  /\  ( O `  ( L `
 f ) ) 
C_  Q )  /\  f  =/=  Y )  /\  x  e.  ( V  \  {  .0.  } )  /\  ( O `  ( L `  f ) )  =  ( N `
 { x }
) )  ->  (
x  e.  ( O `
 ( L `  f ) )  <->  ( N `  { x } ) 
C_  ( O `  ( L `  f ) ) ) )
4123, 40mpbird 232 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  f  e.  C  /\  ( O `  ( L `
 f ) ) 
C_  Q )  /\  f  =/=  Y )  /\  x  e.  ( V  \  {  .0.  } )  /\  ( O `  ( L `  f ) )  =  ( N `
 { x }
) )  ->  x  e.  ( O `  ( L `  f )
) )
4221, 41sseldd 3460 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  f  e.  C  /\  ( O `  ( L `
 f ) ) 
C_  Q )  /\  f  =/=  Y )  /\  x  e.  ( V  \  {  .0.  } )  /\  ( O `  ( L `  f ) )  =  ( N `
 { x }
) )  ->  x  e.  Q )
43 mapdrval.q . . . . . . . . . 10  |-  Q  = 
U_ h  e.  R  ( O `  ( L `
 h ) )
4442, 43syl6eleq 2550 . . . . . . . . 9  |-  ( ( ( ( ph  /\  f  e.  C  /\  ( O `  ( L `
 f ) ) 
C_  Q )  /\  f  =/=  Y )  /\  x  e.  ( V  \  {  .0.  } )  /\  ( O `  ( L `  f ) )  =  ( N `
 { x }
) )  ->  x  e.  U_ h  e.  R  ( O `  ( L `
 h ) ) )
45 eliun 4278 . . . . . . . . 9  |-  ( x  e.  U_ h  e.  R  ( O `  ( L `  h ) )  <->  E. h  e.  R  x  e.  ( O `  ( L `  h
) ) )
4644, 45sylib 196 . . . . . . . 8  |-  ( ( ( ( ph  /\  f  e.  C  /\  ( O `  ( L `
 f ) ) 
C_  Q )  /\  f  =/=  Y )  /\  x  e.  ( V  \  {  .0.  } )  /\  ( O `  ( L `  f ) )  =  ( N `
 { x }
) )  ->  E. h  e.  R  x  e.  ( O `  ( L `
 h ) ) )
47 eqid 2452 . . . . . . . . . . 11  |-  (Scalar `  U )  =  (Scalar `  U )
48 eqid 2452 . . . . . . . . . . 11  |-  ( Base `  (Scalar `  U )
)  =  ( Base `  (Scalar `  U )
)
49 eqid 2452 . . . . . . . . . . 11  |-  ( .s
`  D )  =  ( .s `  D
)
502, 4, 13dvhlvec 35073 . . . . . . . . . . . . . . 15  |-  ( ph  ->  U  e.  LVec )
51503ad2ant1 1009 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  f  e.  C  /\  ( O `  ( L `  f ) )  C_  Q )  ->  U  e.  LVec )
5251adantr 465 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  f  e.  C  /\  ( O `  ( L `  f ) )  C_  Q )  /\  f  =/=  Y )  ->  U  e.  LVec )
53523ad2ant1 1009 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  f  e.  C  /\  ( O `  ( L `
 f ) ) 
C_  Q )  /\  f  =/=  Y )  /\  x  e.  ( V  \  {  .0.  } )  /\  ( O `  ( L `  f ) )  =  ( N `
 { x }
) )  ->  U  e.  LVec )
5453ad2antrr 725 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  f  e.  C  /\  ( O `  ( L `  f ) )  C_  Q )  /\  f  =/=  Y
)  /\  x  e.  ( V  \  {  .0.  } )  /\  ( O `
 ( L `  f ) )  =  ( N `  {
x } ) )  /\  h  e.  R
)  /\  x  e.  ( O `  ( L `
 h ) ) )  ->  U  e.  LVec )
55 simpr 461 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  f  e.  C  /\  ( O `  ( L `
 f ) ) 
C_  Q )  /\  f  =/=  Y )  /\  x  e.  ( V  \  {  .0.  } )  /\  ( O `  ( L `  f ) )  =  ( N `
 { x }
) )  /\  h  e.  R )  ->  h  e.  R )
56 simp1l1 1081 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  f  e.  C  /\  ( O `  ( L `
 f ) ) 
C_  Q )  /\  f  =/=  Y )  /\  x  e.  ( V  \  {  .0.  } )  /\  ( O `  ( L `  f ) )  =  ( N `
 { x }
) )  ->  ph )
5756adantr 465 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  f  e.  C  /\  ( O `  ( L `
 f ) ) 
C_  Q )  /\  f  =/=  Y )  /\  x  e.  ( V  \  {  .0.  } )  /\  ( O `  ( L `  f ) )  =  ( N `
 { x }
) )  /\  h  e.  R )  ->  ph )
58 mapdrval.e . . . . . . . . . . . . . . . 16  |-  ( ph  ->  R  C_  C )
5957, 58syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  f  e.  C  /\  ( O `  ( L `
 f ) ) 
C_  Q )  /\  f  =/=  Y )  /\  x  e.  ( V  \  {  .0.  } )  /\  ( O `  ( L `  f ) )  =  ( N `
 { x }
) )  /\  h  e.  R )  ->  R  C_  C )
6059sseld 3458 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  f  e.  C  /\  ( O `  ( L `
 f ) ) 
C_  Q )  /\  f  =/=  Y )  /\  x  e.  ( V  \  {  .0.  } )  /\  ( O `  ( L `  f ) )  =  ( N `
 { x }
) )  /\  h  e.  R )  ->  (
h  e.  R  ->  h  e.  C )
)
6112lcfl1lem 35455 . . . . . . . . . . . . . . 15  |-  ( h  e.  C  <->  ( h  e.  F  /\  ( O `  ( O `  ( L `  h
) ) )  =  ( L `  h
) ) )
6261simplbi 460 . . . . . . . . . . . . . 14  |-  ( h  e.  C  ->  h  e.  F )
6360, 62syl6 33 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  f  e.  C  /\  ( O `  ( L `
 f ) ) 
C_  Q )  /\  f  =/=  Y )  /\  x  e.  ( V  \  {  .0.  } )  /\  ( O `  ( L `  f ) )  =  ( N `
 { x }
) )  /\  h  e.  R )  ->  (
h  e.  R  ->  h  e.  F )
)
6455, 63mpd 15 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  f  e.  C  /\  ( O `  ( L `
 f ) ) 
C_  Q )  /\  f  =/=  Y )  /\  x  e.  ( V  \  {  .0.  } )  /\  ( O `  ( L `  f ) )  =  ( N `
 { x }
) )  /\  h  e.  R )  ->  h  e.  F )
6564adantr 465 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  f  e.  C  /\  ( O `  ( L `  f ) )  C_  Q )  /\  f  =/=  Y
)  /\  x  e.  ( V  \  {  .0.  } )  /\  ( O `
 ( L `  f ) )  =  ( N `  {
x } ) )  /\  h  e.  R
)  /\  x  e.  ( O `  ( L `
 h ) ) )  ->  h  e.  F )
6634ad2antrr 725 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  f  e.  C  /\  ( O `  ( L `  f ) )  C_  Q )  /\  f  =/=  Y
)  /\  x  e.  ( V  \  {  .0.  } )  /\  ( O `
 ( L `  f ) )  =  ( N `  {
x } ) )  /\  h  e.  R
)  /\  x  e.  ( O `  ( L `
 h ) ) )  ->  f  e.  F )
67 simpll3 1029 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  f  e.  C  /\  ( O `  ( L `  f ) )  C_  Q )  /\  f  =/=  Y
)  /\  x  e.  ( V  \  {  .0.  } )  /\  ( O `
 ( L `  f ) )  =  ( N `  {
x } ) )  /\  h  e.  R
)  /\  x  e.  ( O `  ( L `
 h ) ) )  ->  ( O `  ( L `  f
) )  =  ( N `  { x } ) )
6828ad2antrr 725 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( (
ph  /\  f  e.  C  /\  ( O `  ( L `  f ) )  C_  Q )  /\  f  =/=  Y
)  /\  x  e.  ( V  \  {  .0.  } )  /\  ( O `
 ( L `  f ) )  =  ( N `  {
x } ) )  /\  h  e.  R
)  /\  x  e.  ( O `  ( L `
 h ) ) )  ->  U  e.  LMod )
6929ad2antrr 725 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( (
ph  /\  f  e.  C  /\  ( O `  ( L `  f ) )  C_  Q )  /\  f  =/=  Y
)  /\  x  e.  ( V  \  {  .0.  } )  /\  ( O `
 ( L `  f ) )  =  ( N `  {
x } ) )  /\  h  e.  R
)  /\  x  e.  ( O `  ( L `
 h ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
705, 8, 9, 68, 65lkrssv 33060 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( (
ph  /\  f  e.  C  /\  ( O `  ( L `  f ) )  C_  Q )  /\  f  =/=  Y
)  /\  x  e.  ( V  \  {  .0.  } )  /\  ( O `
 ( L `  f ) )  =  ( N `  {
x } ) )  /\  h  e.  R
)  /\  x  e.  ( O `  ( L `
 h ) ) )  ->  ( L `  h )  C_  V
)
712, 4, 5, 24, 3dochlss 35318 . . . . . . . . . . . . . . . 16  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( L `  h )  C_  V
)  ->  ( O `  ( L `  h
) )  e.  S
)
7269, 70, 71syl2anc 661 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( (
ph  /\  f  e.  C  /\  ( O `  ( L `  f ) )  C_  Q )  /\  f  =/=  Y
)  /\  x  e.  ( V  \  {  .0.  } )  /\  ( O `
 ( L `  f ) )  =  ( N `  {
x } ) )  /\  h  e.  R
)  /\  x  e.  ( O `  ( L `
 h ) ) )  ->  ( O `  ( L `  h
) )  e.  S
)
73 simpr 461 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( (
ph  /\  f  e.  C  /\  ( O `  ( L `  f ) )  C_  Q )  /\  f  =/=  Y
)  /\  x  e.  ( V  \  {  .0.  } )  /\  ( O `
 ( L `  f ) )  =  ( N `  {
x } ) )  /\  h  e.  R
)  /\  x  e.  ( O `  ( L `
 h ) ) )  ->  x  e.  ( O `  ( L `
 h ) ) )
7424, 6, 68, 72, 73lspsnel5a 17195 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( (
ph  /\  f  e.  C  /\  ( O `  ( L `  f ) )  C_  Q )  /\  f  =/=  Y
)  /\  x  e.  ( V  \  {  .0.  } )  /\  ( O `
 ( L `  f ) )  =  ( N `  {
x } ) )  /\  h  e.  R
)  /\  x  e.  ( O `  ( L `
 h ) ) )  ->  ( N `  { x } ) 
C_  ( O `  ( L `  h ) ) )
75 mapdrvallem2.a . . . . . . . . . . . . . . 15  |-  A  =  (LSAtoms `  U )
76 simpll2 1028 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( (
ph  /\  f  e.  C  /\  ( O `  ( L `  f ) )  C_  Q )  /\  f  =/=  Y
)  /\  x  e.  ( V  \  {  .0.  } )  /\  ( O `
 ( L `  f ) )  =  ( N `  {
x } ) )  /\  h  e.  R
)  /\  x  e.  ( O `  ( L `
 h ) ) )  ->  x  e.  ( V  \  {  .0.  } ) )
775, 6, 7, 75, 68, 76lsatlspsn 32957 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( (
ph  /\  f  e.  C  /\  ( O `  ( L `  f ) )  C_  Q )  /\  f  =/=  Y
)  /\  x  e.  ( V  \  {  .0.  } )  /\  ( O `
 ( L `  f ) )  =  ( N `  {
x } ) )  /\  h  e.  R
)  /\  x  e.  ( O `  ( L `
 h ) ) )  ->  ( N `  { x } )  e.  A )
782, 3, 4, 7, 75, 8, 9, 69, 65dochsat0 35421 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( (
ph  /\  f  e.  C  /\  ( O `  ( L `  f ) )  C_  Q )  /\  f  =/=  Y
)  /\  x  e.  ( V  \  {  .0.  } )  /\  ( O `
 ( L `  f ) )  =  ( N `  {
x } ) )  /\  h  e.  R
)  /\  x  e.  ( O `  ( L `
 h ) ) )  ->  ( ( O `  ( L `  h ) )  e.  A  \/  ( O `
 ( L `  h ) )  =  {  .0.  } ) )
797, 75, 54, 77, 78lsatcmp2 32968 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( (
ph  /\  f  e.  C  /\  ( O `  ( L `  f ) )  C_  Q )  /\  f  =/=  Y
)  /\  x  e.  ( V  \  {  .0.  } )  /\  ( O `
 ( L `  f ) )  =  ( N `  {
x } ) )  /\  h  e.  R
)  /\  x  e.  ( O `  ( L `
 h ) ) )  ->  ( ( N `  { x } )  C_  ( O `  ( L `  h ) )  <->  ( N `  { x } )  =  ( O `  ( L `  h ) ) ) )
8074, 79mpbid 210 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  f  e.  C  /\  ( O `  ( L `  f ) )  C_  Q )  /\  f  =/=  Y
)  /\  x  e.  ( V  \  {  .0.  } )  /\  ( O `
 ( L `  f ) )  =  ( N `  {
x } ) )  /\  h  e.  R
)  /\  x  e.  ( O `  ( L `
 h ) ) )  ->  ( N `  { x } )  =  ( O `  ( L `  h ) ) )
8167, 80eqtr2d 2494 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  f  e.  C  /\  ( O `  ( L `  f ) )  C_  Q )  /\  f  =/=  Y
)  /\  x  e.  ( V  \  {  .0.  } )  /\  ( O `
 ( L `  f ) )  =  ( N `  {
x } ) )  /\  h  e.  R
)  /\  x  e.  ( O `  ( L `
 h ) ) )  ->  ( O `  ( L `  h
) )  =  ( O `  ( L `
 f ) ) )
82 eqid 2452 . . . . . . . . . . . . 13  |-  ( (
DIsoH `  K ) `  W )  =  ( ( DIsoH `  K ) `  W )
8356, 58syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  f  e.  C  /\  ( O `  ( L `
 f ) ) 
C_  Q )  /\  f  =/=  Y )  /\  x  e.  ( V  \  {  .0.  } )  /\  ( O `  ( L `  f ) )  =  ( N `
 { x }
) )  ->  R  C_  C )
8483sselda 3459 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  f  e.  C  /\  ( O `  ( L `
 f ) ) 
C_  Q )  /\  f  =/=  Y )  /\  x  e.  ( V  \  {  .0.  } )  /\  ( O `  ( L `  f ) )  =  ( N `
 { x }
) )  /\  h  e.  R )  ->  h  e.  C )
8584adantr 465 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( (
ph  /\  f  e.  C  /\  ( O `  ( L `  f ) )  C_  Q )  /\  f  =/=  Y
)  /\  x  e.  ( V  \  {  .0.  } )  /\  ( O `
 ( L `  f ) )  =  ( N `  {
x } ) )  /\  h  e.  R
)  /\  x  e.  ( O `  ( L `
 h ) ) )  ->  h  e.  C )
862, 82, 3, 4, 8, 9, 12, 69, 65lcfl5 35460 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( (
ph  /\  f  e.  C  /\  ( O `  ( L `  f ) )  C_  Q )  /\  f  =/=  Y
)  /\  x  e.  ( V  \  {  .0.  } )  /\  ( O `
 ( L `  f ) )  =  ( N `  {
x } ) )  /\  h  e.  R
)  /\  x  e.  ( O `  ( L `
 h ) ) )  ->  ( h  e.  C  <->  ( L `  h )  e.  ran  ( ( DIsoH `  K
) `  W )
) )
8785, 86mpbid 210 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  f  e.  C  /\  ( O `  ( L `  f ) )  C_  Q )  /\  f  =/=  Y
)  /\  x  e.  ( V  \  {  .0.  } )  /\  ( O `
 ( L `  f ) )  =  ( N `  {
x } ) )  /\  h  e.  R
)  /\  x  e.  ( O `  ( L `
 h ) ) )  ->  ( L `  h )  e.  ran  ( ( DIsoH `  K
) `  W )
)
88 simp1l2 1082 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  f  e.  C  /\  ( O `  ( L `
 f ) ) 
C_  Q )  /\  f  =/=  Y )  /\  x  e.  ( V  \  {  .0.  } )  /\  ( O `  ( L `  f ) )  =  ( N `
 { x }
) )  ->  f  e.  C )
8988ad2antrr 725 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( (
ph  /\  f  e.  C  /\  ( O `  ( L `  f ) )  C_  Q )  /\  f  =/=  Y
)  /\  x  e.  ( V  \  {  .0.  } )  /\  ( O `
 ( L `  f ) )  =  ( N `  {
x } ) )  /\  h  e.  R
)  /\  x  e.  ( O `  ( L `
 h ) ) )  ->  f  e.  C )
902, 82, 3, 4, 8, 9, 12, 69, 66lcfl5 35460 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( (
ph  /\  f  e.  C  /\  ( O `  ( L `  f ) )  C_  Q )  /\  f  =/=  Y
)  /\  x  e.  ( V  \  {  .0.  } )  /\  ( O `
 ( L `  f ) )  =  ( N `  {
x } ) )  /\  h  e.  R
)  /\  x  e.  ( O `  ( L `
 h ) ) )  ->  ( f  e.  C  <->  ( L `  f )  e.  ran  ( ( DIsoH `  K
) `  W )
) )
9189, 90mpbid 210 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  f  e.  C  /\  ( O `  ( L `  f ) )  C_  Q )  /\  f  =/=  Y
)  /\  x  e.  ( V  \  {  .0.  } )  /\  ( O `
 ( L `  f ) )  =  ( N `  {
x } ) )  /\  h  e.  R
)  /\  x  e.  ( O `  ( L `
 h ) ) )  ->  ( L `  f )  e.  ran  ( ( DIsoH `  K
) `  W )
)
922, 82, 3, 69, 87, 91doch11 35337 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  f  e.  C  /\  ( O `  ( L `  f ) )  C_  Q )  /\  f  =/=  Y
)  /\  x  e.  ( V  \  {  .0.  } )  /\  ( O `
 ( L `  f ) )  =  ( N `  {
x } ) )  /\  h  e.  R
)  /\  x  e.  ( O `  ( L `
 h ) ) )  ->  ( ( O `  ( L `  h ) )  =  ( O `  ( L `  f )
)  <->  ( L `  h )  =  ( L `  f ) ) )
9381, 92mpbid 210 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  f  e.  C  /\  ( O `  ( L `  f ) )  C_  Q )  /\  f  =/=  Y
)  /\  x  e.  ( V  \  {  .0.  } )  /\  ( O `
 ( L `  f ) )  =  ( N `  {
x } ) )  /\  h  e.  R
)  /\  x  e.  ( O `  ( L `
 h ) ) )  ->  ( L `  h )  =  ( L `  f ) )
9447, 48, 8, 9, 10, 49, 54, 65, 66, 93eqlkr4 33129 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  f  e.  C  /\  ( O `  ( L `  f ) )  C_  Q )  /\  f  =/=  Y
)  /\  x  e.  ( V  \  {  .0.  } )  /\  ( O `
 ( L `  f ) )  =  ( N `  {
x } ) )  /\  h  e.  R
)  /\  x  e.  ( O `  ( L `
 h ) ) )  ->  E. r  e.  ( Base `  (Scalar `  U ) ) f  =  ( r ( .s `  D ) h ) )
9594ex 434 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  f  e.  C  /\  ( O `  ( L `
 f ) ) 
C_  Q )  /\  f  =/=  Y )  /\  x  e.  ( V  \  {  .0.  } )  /\  ( O `  ( L `  f ) )  =  ( N `
 { x }
) )  /\  h  e.  R )  ->  (
x  e.  ( O `
 ( L `  h ) )  ->  E. r  e.  ( Base `  (Scalar `  U
) ) f  =  ( r ( .s
`  D ) h ) ) )
9695reximdva 2928 . . . . . . . 8  |-  ( ( ( ( ph  /\  f  e.  C  /\  ( O `  ( L `
 f ) ) 
C_  Q )  /\  f  =/=  Y )  /\  x  e.  ( V  \  {  .0.  } )  /\  ( O `  ( L `  f ) )  =  ( N `
 { x }
) )  ->  ( E. h  e.  R  x  e.  ( O `  ( L `  h
) )  ->  E. h  e.  R  E. r  e.  ( Base `  (Scalar `  U ) ) f  =  ( r ( .s `  D ) h ) ) )
9746, 96mpd 15 . . . . . . 7  |-  ( ( ( ( ph  /\  f  e.  C  /\  ( O `  ( L `
 f ) ) 
C_  Q )  /\  f  =/=  Y )  /\  x  e.  ( V  \  {  .0.  } )  /\  ( O `  ( L `  f ) )  =  ( N `
 { x }
) )  ->  E. h  e.  R  E. r  e.  ( Base `  (Scalar `  U ) ) f  =  ( r ( .s `  D ) h ) )
98 eleq1 2524 . . . . . . . . . 10  |-  ( f  =  ( r ( .s `  D ) h )  ->  (
f  e.  R  <->  ( r
( .s `  D
) h )  e.  R ) )
9998reximi 2923 . . . . . . . . 9  |-  ( E. r  e.  ( Base `  (Scalar `  U )
) f  =  ( r ( .s `  D ) h )  ->  E. r  e.  (
Base `  (Scalar `  U
) ) ( f  e.  R  <->  ( r
( .s `  D
) h )  e.  R ) )
10099reximi 2923 . . . . . . . 8  |-  ( E. h  e.  R  E. r  e.  ( Base `  (Scalar `  U )
) f  =  ( r ( .s `  D ) h )  ->  E. h  e.  R  E. r  e.  ( Base `  (Scalar `  U
) ) ( f  e.  R  <->  ( r
( .s `  D
) h )  e.  R ) )
101 rexcom 2982 . . . . . . . . 9  |-  ( E. h  e.  R  E. r  e.  ( Base `  (Scalar `  U )
) ( f  e.  R  <->  ( r ( .s `  D ) h )  e.  R
)  <->  E. r  e.  (
Base `  (Scalar `  U
) ) E. h  e.  R  ( f  e.  R  <->  ( r ( .s `  D ) h )  e.  R
) )
102 df-rex 2802 . . . . . . . . . 10  |-  ( E. h  e.  R  ( f  e.  R  <->  ( r
( .s `  D
) h )  e.  R )  <->  E. h
( h  e.  R  /\  ( f  e.  R  <->  ( r ( .s `  D ) h )  e.  R ) ) )
103102rexbii 2861 . . . . . . . . 9  |-  ( E. r  e.  ( Base `  (Scalar `  U )
) E. h  e.  R  ( f  e.  R  <->  ( r ( .s `  D ) h )  e.  R
)  <->  E. r  e.  (
Base `  (Scalar `  U
) ) E. h
( h  e.  R  /\  ( f  e.  R  <->  ( r ( .s `  D ) h )  e.  R ) ) )
104101, 103bitri 249 . . . . . . . 8  |-  ( E. h  e.  R  E. r  e.  ( Base `  (Scalar `  U )
) ( f  e.  R  <->  ( r ( .s `  D ) h )  e.  R
)  <->  E. r  e.  (
Base `  (Scalar `  U
) ) E. h
( h  e.  R  /\  ( f  e.  R  <->  ( r ( .s `  D ) h )  e.  R ) ) )
105100, 104sylib 196 . . . . . . 7  |-  ( E. h  e.  R  E. r  e.  ( Base `  (Scalar `  U )
) f  =  ( r ( .s `  D ) h )  ->  E. r  e.  (
Base `  (Scalar `  U
) ) E. h
( h  e.  R  /\  ( f  e.  R  <->  ( r ( .s `  D ) h )  e.  R ) ) )
10697, 105syl 16 . . . . . 6  |-  ( ( ( ( ph  /\  f  e.  C  /\  ( O `  ( L `
 f ) ) 
C_  Q )  /\  f  =/=  Y )  /\  x  e.  ( V  \  {  .0.  } )  /\  ( O `  ( L `  f ) )  =  ( N `
 { x }
) )  ->  E. r  e.  ( Base `  (Scalar `  U ) ) E. h ( h  e.  R  /\  ( f  e.  R  <->  ( r
( .s `  D
) h )  e.  R ) ) )
107 mapdrval.t . . . . . . . . . . . 12  |-  T  =  ( LSubSp `  D )
10827ad2antrr 725 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  f  e.  C  /\  ( O `  ( L `
 f ) ) 
C_  Q )  /\  f  =/=  Y )  /\  r  e.  ( Base `  (Scalar `  U )
) )  /\  (
h  e.  R  /\  ( f  e.  R  <->  ( r ( .s `  D ) h )  e.  R ) ) )  ->  U  e.  LMod )
109 mapdrval.r . . . . . . . . . . . . . . 15  |-  ( ph  ->  R  e.  T )
1101093ad2ant1 1009 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  f  e.  C  /\  ( O `  ( L `  f ) )  C_  Q )  ->  R  e.  T )
111110adantr 465 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  f  e.  C  /\  ( O `  ( L `  f ) )  C_  Q )  /\  f  =/=  Y )  ->  R  e.  T )
112111ad2antrr 725 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  f  e.  C  /\  ( O `  ( L `
 f ) ) 
C_  Q )  /\  f  =/=  Y )  /\  r  e.  ( Base `  (Scalar `  U )
) )  /\  (
h  e.  R  /\  ( f  e.  R  <->  ( r ( .s `  D ) h )  e.  R ) ) )  ->  R  e.  T )
113 simplr 754 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  f  e.  C  /\  ( O `  ( L `
 f ) ) 
C_  Q )  /\  f  =/=  Y )  /\  r  e.  ( Base `  (Scalar `  U )
) )  /\  (
h  e.  R  /\  ( f  e.  R  <->  ( r ( .s `  D ) h )  e.  R ) ) )  ->  r  e.  ( Base `  (Scalar `  U
) ) )
114 simprl 755 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  f  e.  C  /\  ( O `  ( L `
 f ) ) 
C_  Q )  /\  f  =/=  Y )  /\  r  e.  ( Base `  (Scalar `  U )
) )  /\  (
h  e.  R  /\  ( f  e.  R  <->  ( r ( .s `  D ) h )  e.  R ) ) )  ->  h  e.  R )
11547, 48, 10, 49, 107, 108, 112, 113, 114ldualssvscl 33122 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  f  e.  C  /\  ( O `  ( L `
 f ) ) 
C_  Q )  /\  f  =/=  Y )  /\  r  e.  ( Base `  (Scalar `  U )
) )  /\  (
h  e.  R  /\  ( f  e.  R  <->  ( r ( .s `  D ) h )  e.  R ) ) )  ->  ( r
( .s `  D
) h )  e.  R )
116 bi2 198 . . . . . . . . . . . 12  |-  ( ( f  e.  R  <->  ( r
( .s `  D
) h )  e.  R )  ->  (
( r ( .s
`  D ) h )  e.  R  -> 
f  e.  R ) )
117116ad2antll 728 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  f  e.  C  /\  ( O `  ( L `
 f ) ) 
C_  Q )  /\  f  =/=  Y )  /\  r  e.  ( Base `  (Scalar `  U )
) )  /\  (
h  e.  R  /\  ( f  e.  R  <->  ( r ( .s `  D ) h )  e.  R ) ) )  ->  ( (
r ( .s `  D ) h )  e.  R  ->  f  e.  R ) )
118115, 117mpd 15 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  f  e.  C  /\  ( O `  ( L `
 f ) ) 
C_  Q )  /\  f  =/=  Y )  /\  r  e.  ( Base `  (Scalar `  U )
) )  /\  (
h  e.  R  /\  ( f  e.  R  <->  ( r ( .s `  D ) h )  e.  R ) ) )  ->  f  e.  R )
119118ex 434 . . . . . . . . 9  |-  ( ( ( ( ph  /\  f  e.  C  /\  ( O `  ( L `
 f ) ) 
C_  Q )  /\  f  =/=  Y )  /\  r  e.  ( Base `  (Scalar `  U )
) )  ->  (
( h  e.  R  /\  ( f  e.  R  <->  ( r ( .s `  D ) h )  e.  R ) )  ->  f  e.  R
) )
120119exlimdv 1691 . . . . . . . 8  |-  ( ( ( ( ph  /\  f  e.  C  /\  ( O `  ( L `
 f ) ) 
C_  Q )  /\  f  =/=  Y )  /\  r  e.  ( Base `  (Scalar `  U )
) )  ->  ( E. h ( h  e.  R  /\  ( f  e.  R  <->  ( r
( .s `  D
) h )  e.  R ) )  -> 
f  e.  R ) )
121120rexlimdva 2941 . . . . . . 7  |-  ( ( ( ph  /\  f  e.  C  /\  ( O `  ( L `  f ) )  C_  Q )  /\  f  =/=  Y )  ->  ( E. r  e.  ( Base `  (Scalar `  U
) ) E. h
( h  e.  R  /\  ( f  e.  R  <->  ( r ( .s `  D ) h )  e.  R ) )  ->  f  e.  R
) )
1221213ad2ant1 1009 . . . . . 6  |-  ( ( ( ( ph  /\  f  e.  C  /\  ( O `  ( L `
 f ) ) 
C_  Q )  /\  f  =/=  Y )  /\  x  e.  ( V  \  {  .0.  } )  /\  ( O `  ( L `  f ) )  =  ( N `
 { x }
) )  ->  ( E. r  e.  ( Base `  (Scalar `  U
) ) E. h
( h  e.  R  /\  ( f  e.  R  <->  ( r ( .s `  D ) h )  e.  R ) )  ->  f  e.  R
) )
123106, 122mpd 15 . . . . 5  |-  ( ( ( ( ph  /\  f  e.  C  /\  ( O `  ( L `
 f ) ) 
C_  Q )  /\  f  =/=  Y )  /\  x  e.  ( V  \  {  .0.  } )  /\  ( O `  ( L `  f ) )  =  ( N `
 { x }
) )  ->  f  e.  R )
124123rexlimdv3a 2943 . . . 4  |-  ( ( ( ph  /\  f  e.  C  /\  ( O `  ( L `  f ) )  C_  Q )  /\  f  =/=  Y )  ->  ( E. x  e.  ( V  \  {  .0.  }
) ( O `  ( L `  f ) )  =  ( N `
 { x }
)  ->  f  e.  R ) )
12520, 124mpd 15 . . 3  |-  ( ( ( ph  /\  f  e.  C  /\  ( O `  ( L `  f ) )  C_  Q )  /\  f  =/=  Y )  ->  f  e.  R )
12610, 25lduallmod 33117 . . . . 5  |-  ( ph  ->  D  e.  LMod )
1271263ad2ant1 1009 . . . 4  |-  ( (
ph  /\  f  e.  C  /\  ( O `  ( L `  f ) )  C_  Q )  ->  D  e.  LMod )
12811, 107lss0cl 17146 . . . 4  |-  ( ( D  e.  LMod  /\  R  e.  T )  ->  Y  e.  R )
129127, 110, 128syl2anc 661 . . 3  |-  ( (
ph  /\  f  e.  C  /\  ( O `  ( L `  f ) )  C_  Q )  ->  Y  e.  R )
1301, 125, 129pm2.61ne 2764 . 2  |-  ( (
ph  /\  f  e.  C  /\  ( O `  ( L `  f ) )  C_  Q )  ->  f  e.  R )
131130rabssdv 3535 1  |-  ( ph  ->  { f  e.  C  |  ( O `  ( L `  f ) )  C_  Q }  C_  R )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1370   E.wex 1587    e. wcel 1758    =/= wne 2645   E.wrex 2797   {crab 2800    \ cdif 3428    C_ wss 3431   {csn 3980   U_ciun 4274   ran crn 4944   ` cfv 5521  (class class class)co 6195   Basecbs 14287  Scalarcsca 14355   .scvsca 14356   0gc0g 14492   LModclmod 17066   LSubSpclss 17131   LSpanclspn 17170   LVecclvec 17301  LSAtomsclsa 32938  LFnlclfn 33021  LKerclk 33049  LDualcld 33087   HLchlt 33314   LHypclh 33947   DVecHcdvh 35042   DIsoHcdih 35192   ocHcoch 35311  mapdcmpd 35588
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1954  ax-ext 2431  ax-rep 4506  ax-sep 4516  ax-nul 4524  ax-pow 4573  ax-pr 4634  ax-un 6477  ax-cnex 9444  ax-resscn 9445  ax-1cn 9446  ax-icn 9447  ax-addcl 9448  ax-addrcl 9449  ax-mulcl 9450  ax-mulrcl 9451  ax-mulcom 9452  ax-addass 9453  ax-mulass 9454  ax-distr 9455  ax-i2m1 9456  ax-1ne0 9457  ax-1rid 9458  ax-rnegex 9459  ax-rrecex 9460  ax-cnre 9461  ax-pre-lttri 9462  ax-pre-lttrn 9463  ax-pre-ltadd 9464  ax-pre-mulgt0 9465  ax-riotaBAD 32923
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-fal 1376  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2265  df-mo 2266  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2602  df-ne 2647  df-nel 2648  df-ral 2801  df-rex 2802  df-reu 2803  df-rmo 2804  df-rab 2805  df-v 3074  df-sbc 3289  df-csb 3391  df-dif 3434  df-un 3436  df-in 3438  df-ss 3445  df-pss 3447  df-nul 3741  df-if 3895  df-pw 3965  df-sn 3981  df-pr 3983  df-tp 3985  df-op 3987  df-uni 4195  df-int 4232  df-iun 4276  df-iin 4277  df-br 4396  df-opab 4454  df-mpt 4455  df-tr 4489  df-eprel 4735  df-id 4739  df-po 4744  df-so 4745  df-fr 4782  df-we 4784  df-ord 4825  df-on 4826  df-lim 4827  df-suc 4828  df-xp 4949  df-rel 4950  df-cnv 4951  df-co 4952  df-dm 4953  df-rn 4954  df-res 4955  df-ima 4956  df-iota 5484  df-fun 5523  df-fn 5524  df-f 5525  df-f1 5526  df-fo 5527  df-f1o 5528  df-fv 5529  df-riota 6156  df-ov 6198  df-oprab 6199  df-mpt2 6200  df-of 6425  df-om 6582  df-1st 6682  df-2nd 6683  df-tpos 6850  df-undef 6897  df-recs 6937  df-rdg 6971  df-1o 7025  df-oadd 7029  df-er 7206  df-map 7321  df-en 7416  df-dom 7417  df-sdom 7418  df-fin 7419  df-pnf 9526  df-mnf 9527  df-xr 9528  df-ltxr 9529  df-le 9530  df-sub 9703  df-neg 9704  df-nn 10429  df-2 10486  df-3 10487  df-4 10488  df-5 10489  df-6 10490  df-n0 10686  df-z 10753  df-uz 10968  df-fz 11550  df-struct 14289  df-ndx 14290  df-slot 14291  df-base 14292  df-sets 14293  df-ress 14294  df-plusg 14365  df-mulr 14366  df-sca 14368  df-vsca 14369  df-0g 14494  df-poset 15230  df-plt 15242  df-lub 15258  df-glb 15259  df-join 15260  df-meet 15261  df-p0 15323  df-p1 15324  df-lat 15330  df-clat 15392  df-mnd 15529  df-submnd 15579  df-grp 15659  df-minusg 15660  df-sbg 15661  df-subg 15792  df-cntz 15949  df-lsm 16251  df-cmn 16395  df-abl 16396  df-mgp 16709  df-ur 16721  df-rng 16765  df-oppr 16833  df-dvdsr 16851  df-unit 16852  df-invr 16882  df-dvr 16893  df-drng 16952  df-lmod 17068  df-lss 17132  df-lsp 17171  df-lvec 17302  df-lsatoms 32940  df-lshyp 32941  df-lfl 33022  df-lkr 33050  df-ldual 33088  df-oposet 33140  df-ol 33142  df-oml 33143  df-covers 33230  df-ats 33231  df-atl 33262  df-cvlat 33286  df-hlat 33315  df-llines 33461  df-lplanes 33462  df-lvols 33463  df-lines 33464  df-psubsp 33466  df-pmap 33467  df-padd 33759  df-lhyp 33951  df-laut 33952  df-ldil 34067  df-ltrn 34068  df-trl 34122  df-tgrp 34706  df-tendo 34718  df-edring 34720  df-dveca 34966  df-disoa 34993  df-dvech 35043  df-dib 35103  df-dic 35137  df-dih 35193  df-doch 35312  df-djh 35359
This theorem is referenced by:  mapdrvallem3  35610
  Copyright terms: Public domain W3C validator