Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdordlem2 Structured version   Visualization version   GIF version

Theorem mapdordlem2 35944
Description: Lemma for mapdord 35945. Ordering property of projectivity 𝑀. TODO: This was proved using some hacked-up older proofs. Maybe simplify; get rid of the 𝑇 hypothesis. (Contributed by NM, 27-Jan-2015.)
Hypotheses
Ref Expression
mapdord.h 𝐻 = (LHyp‘𝐾)
mapdord.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdord.s 𝑆 = (LSubSp‘𝑈)
mapdord.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdord.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdord.x (𝜑𝑋𝑆)
mapdord.y (𝜑𝑌𝑆)
mapdord.o 𝑂 = ((ocH‘𝐾)‘𝑊)
mapdord.a 𝐴 = (LSAtoms‘𝑈)
mapdord.f 𝐹 = (LFnl‘𝑈)
mapdord.c 𝐽 = (LSHyp‘𝑈)
mapdord.l 𝐿 = (LKer‘𝑈)
mapdord.t 𝑇 = {𝑔𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑔))) ∈ 𝐽}
mapdord.q 𝐶 = {𝑔𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔)}
Assertion
Ref Expression
mapdordlem2 (𝜑 → ((𝑀𝑋) ⊆ (𝑀𝑌) ↔ 𝑋𝑌))
Distinct variable groups:   𝑔,𝐾   𝑈,𝑔   𝑔,𝑊   𝑔,𝐹   𝑔,𝐽   𝑔,𝐿   𝑔,𝑂
Allowed substitution hints:   𝜑(𝑔)   𝐴(𝑔)   𝐶(𝑔)   𝑆(𝑔)   𝑇(𝑔)   𝐻(𝑔)   𝑀(𝑔)   𝑋(𝑔)   𝑌(𝑔)

Proof of Theorem mapdordlem2
Dummy variables 𝑓 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mapdord.h . . . 4 𝐻 = (LHyp‘𝐾)
2 mapdord.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 mapdord.s . . . 4 𝑆 = (LSubSp‘𝑈)
4 mapdord.f . . . 4 𝐹 = (LFnl‘𝑈)
5 mapdord.l . . . 4 𝐿 = (LKer‘𝑈)
6 mapdord.o . . . 4 𝑂 = ((ocH‘𝐾)‘𝑊)
7 mapdord.m . . . 4 𝑀 = ((mapd‘𝐾)‘𝑊)
8 mapdord.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
9 mapdord.x . . . 4 (𝜑𝑋𝑆)
10 mapdord.q . . . 4 𝐶 = {𝑔𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔)}
111, 2, 3, 4, 5, 6, 7, 8, 9, 10mapdvalc 35936 . . 3 (𝜑 → (𝑀𝑋) = {𝑓𝐶 ∣ (𝑂‘(𝐿𝑓)) ⊆ 𝑋})
12 mapdord.y . . . 4 (𝜑𝑌𝑆)
131, 2, 3, 4, 5, 6, 7, 8, 12, 10mapdvalc 35936 . . 3 (𝜑 → (𝑀𝑌) = {𝑓𝐶 ∣ (𝑂‘(𝐿𝑓)) ⊆ 𝑌})
1411, 13sseq12d 3597 . 2 (𝜑 → ((𝑀𝑋) ⊆ (𝑀𝑌) ↔ {𝑓𝐶 ∣ (𝑂‘(𝐿𝑓)) ⊆ 𝑋} ⊆ {𝑓𝐶 ∣ (𝑂‘(𝐿𝑓)) ⊆ 𝑌}))
15 ss2rab 3641 . . . . 5 ({𝑓𝐶 ∣ (𝑂‘(𝐿𝑓)) ⊆ 𝑋} ⊆ {𝑓𝐶 ∣ (𝑂‘(𝐿𝑓)) ⊆ 𝑌} ↔ ∀𝑓𝐶 ((𝑂‘(𝐿𝑓)) ⊆ 𝑋 → (𝑂‘(𝐿𝑓)) ⊆ 𝑌))
16 eqid 2610 . . . . . . . . 9 (Base‘𝑈) = (Base‘𝑈)
17 mapdord.c . . . . . . . . 9 𝐽 = (LSHyp‘𝑈)
18 mapdord.t . . . . . . . . 9 𝑇 = {𝑔𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑔))) ∈ 𝐽}
191, 6, 2, 16, 17, 4, 5, 18, 10, 8mapdordlem1a 35941 . . . . . . . 8 (𝜑 → (𝑓𝑇 ↔ (𝑓𝐶 ∧ (𝑂‘(𝑂‘(𝐿𝑓))) ∈ 𝐽)))
20 simprl 790 . . . . . . . . . 10 ((𝜑 ∧ (𝑓𝐶 ∧ (𝑂‘(𝑂‘(𝐿𝑓))) ∈ 𝐽)) → 𝑓𝐶)
21 idd 24 . . . . . . . . . 10 ((𝜑 ∧ (𝑓𝐶 ∧ (𝑂‘(𝑂‘(𝐿𝑓))) ∈ 𝐽)) → (((𝑂‘(𝐿𝑓)) ⊆ 𝑋 → (𝑂‘(𝐿𝑓)) ⊆ 𝑌) → ((𝑂‘(𝐿𝑓)) ⊆ 𝑋 → (𝑂‘(𝐿𝑓)) ⊆ 𝑌)))
2220, 21embantd 57 . . . . . . . . 9 ((𝜑 ∧ (𝑓𝐶 ∧ (𝑂‘(𝑂‘(𝐿𝑓))) ∈ 𝐽)) → ((𝑓𝐶 → ((𝑂‘(𝐿𝑓)) ⊆ 𝑋 → (𝑂‘(𝐿𝑓)) ⊆ 𝑌)) → ((𝑂‘(𝐿𝑓)) ⊆ 𝑋 → (𝑂‘(𝐿𝑓)) ⊆ 𝑌)))
2322ex 449 . . . . . . . 8 (𝜑 → ((𝑓𝐶 ∧ (𝑂‘(𝑂‘(𝐿𝑓))) ∈ 𝐽) → ((𝑓𝐶 → ((𝑂‘(𝐿𝑓)) ⊆ 𝑋 → (𝑂‘(𝐿𝑓)) ⊆ 𝑌)) → ((𝑂‘(𝐿𝑓)) ⊆ 𝑋 → (𝑂‘(𝐿𝑓)) ⊆ 𝑌))))
2419, 23sylbid 229 . . . . . . 7 (𝜑 → (𝑓𝑇 → ((𝑓𝐶 → ((𝑂‘(𝐿𝑓)) ⊆ 𝑋 → (𝑂‘(𝐿𝑓)) ⊆ 𝑌)) → ((𝑂‘(𝐿𝑓)) ⊆ 𝑋 → (𝑂‘(𝐿𝑓)) ⊆ 𝑌))))
2524com23 84 . . . . . 6 (𝜑 → ((𝑓𝐶 → ((𝑂‘(𝐿𝑓)) ⊆ 𝑋 → (𝑂‘(𝐿𝑓)) ⊆ 𝑌)) → (𝑓𝑇 → ((𝑂‘(𝐿𝑓)) ⊆ 𝑋 → (𝑂‘(𝐿𝑓)) ⊆ 𝑌))))
2625ralimdv2 2944 . . . . 5 (𝜑 → (∀𝑓𝐶 ((𝑂‘(𝐿𝑓)) ⊆ 𝑋 → (𝑂‘(𝐿𝑓)) ⊆ 𝑌) → ∀𝑓𝑇 ((𝑂‘(𝐿𝑓)) ⊆ 𝑋 → (𝑂‘(𝐿𝑓)) ⊆ 𝑌)))
2715, 26syl5bi 231 . . . 4 (𝜑 → ({𝑓𝐶 ∣ (𝑂‘(𝐿𝑓)) ⊆ 𝑋} ⊆ {𝑓𝐶 ∣ (𝑂‘(𝐿𝑓)) ⊆ 𝑌} → ∀𝑓𝑇 ((𝑂‘(𝐿𝑓)) ⊆ 𝑋 → (𝑂‘(𝐿𝑓)) ⊆ 𝑌)))
28 mapdord.a . . . . . 6 𝐴 = (LSAtoms‘𝑈)
291, 2, 8dvhlmod 35417 . . . . . 6 (𝜑𝑈 ∈ LMod)
303, 28, 29, 9, 12lssatle 33320 . . . . 5 (𝜑 → (𝑋𝑌 ↔ ∀𝑝𝐴 (𝑝𝑋𝑝𝑌)))
3118mapdordlem1 35943 . . . . . . . . . . 11 (𝑓𝑇 ↔ (𝑓𝐹 ∧ (𝑂‘(𝑂‘(𝐿𝑓))) ∈ 𝐽))
3231simprbi 479 . . . . . . . . . 10 (𝑓𝑇 → (𝑂‘(𝑂‘(𝐿𝑓))) ∈ 𝐽)
3332adantl 481 . . . . . . . . 9 ((𝜑𝑓𝑇) → (𝑂‘(𝑂‘(𝐿𝑓))) ∈ 𝐽)
348adantr 480 . . . . . . . . . 10 ((𝜑𝑓𝑇) → (𝐾 ∈ HL ∧ 𝑊𝐻))
3531simplbi 475 . . . . . . . . . . 11 (𝑓𝑇𝑓𝐹)
3635adantl 481 . . . . . . . . . 10 ((𝜑𝑓𝑇) → 𝑓𝐹)
371, 6, 2, 4, 17, 5, 34, 36dochlkr 35692 . . . . . . . . 9 ((𝜑𝑓𝑇) → ((𝑂‘(𝑂‘(𝐿𝑓))) ∈ 𝐽 ↔ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝐿𝑓) ∈ 𝐽)))
3833, 37mpbid 221 . . . . . . . 8 ((𝜑𝑓𝑇) → ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝐿𝑓) ∈ 𝐽))
3938simpld 474 . . . . . . 7 ((𝜑𝑓𝑇) → (𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓))
4038simprd 478 . . . . . . . 8 ((𝜑𝑓𝑇) → (𝐿𝑓) ∈ 𝐽)
411, 6, 2, 28, 17, 34, 40dochshpsat 35761 . . . . . . 7 ((𝜑𝑓𝑇) → ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ↔ (𝑂‘(𝐿𝑓)) ∈ 𝐴))
4239, 41mpbid 221 . . . . . 6 ((𝜑𝑓𝑇) → (𝑂‘(𝐿𝑓)) ∈ 𝐴)
431, 2, 8dvhlvec 35416 . . . . . . . . . . 11 (𝜑𝑈 ∈ LVec)
4443adantr 480 . . . . . . . . . 10 ((𝜑𝑝𝐴) → 𝑈 ∈ LVec)
458adantr 480 . . . . . . . . . . 11 ((𝜑𝑝𝐴) → (𝐾 ∈ HL ∧ 𝑊𝐻))
46 simpr 476 . . . . . . . . . . 11 ((𝜑𝑝𝐴) → 𝑝𝐴)
471, 2, 6, 28, 17, 45, 46dochsatshp 35758 . . . . . . . . . 10 ((𝜑𝑝𝐴) → (𝑂𝑝) ∈ 𝐽)
4817, 4, 5lshpkrex 33423 . . . . . . . . . 10 ((𝑈 ∈ LVec ∧ (𝑂𝑝) ∈ 𝐽) → ∃𝑓𝐹 (𝐿𝑓) = (𝑂𝑝))
4944, 47, 48syl2anc 691 . . . . . . . . 9 ((𝜑𝑝𝐴) → ∃𝑓𝐹 (𝐿𝑓) = (𝑂𝑝))
50 df-rex 2902 . . . . . . . . 9 (∃𝑓𝐹 (𝐿𝑓) = (𝑂𝑝) ↔ ∃𝑓(𝑓𝐹 ∧ (𝐿𝑓) = (𝑂𝑝)))
5149, 50sylib 207 . . . . . . . 8 ((𝜑𝑝𝐴) → ∃𝑓(𝑓𝐹 ∧ (𝐿𝑓) = (𝑂𝑝)))
52 simprl 790 . . . . . . . . . . . 12 (((𝜑𝑝𝐴) ∧ (𝑓𝐹 ∧ (𝐿𝑓) = (𝑂𝑝))) → 𝑓𝐹)
53 simprr 792 . . . . . . . . . . . . . . . 16 (((𝜑𝑝𝐴) ∧ (𝑓𝐹 ∧ (𝐿𝑓) = (𝑂𝑝))) → (𝐿𝑓) = (𝑂𝑝))
5453fveq2d 6107 . . . . . . . . . . . . . . 15 (((𝜑𝑝𝐴) ∧ (𝑓𝐹 ∧ (𝐿𝑓) = (𝑂𝑝))) → (𝑂‘(𝐿𝑓)) = (𝑂‘(𝑂𝑝)))
5554fveq2d 6107 . . . . . . . . . . . . . 14 (((𝜑𝑝𝐴) ∧ (𝑓𝐹 ∧ (𝐿𝑓) = (𝑂𝑝))) → (𝑂‘(𝑂‘(𝐿𝑓))) = (𝑂‘(𝑂‘(𝑂𝑝))))
5629adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑝𝐴) → 𝑈 ∈ LMod)
5716, 28, 56, 46lsatssv 33303 . . . . . . . . . . . . . . . . 17 ((𝜑𝑝𝐴) → 𝑝 ⊆ (Base‘𝑈))
58 eqid 2610 . . . . . . . . . . . . . . . . . 18 ((DIsoH‘𝐾)‘𝑊) = ((DIsoH‘𝐾)‘𝑊)
591, 58, 2, 16, 6dochcl 35660 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑝 ⊆ (Base‘𝑈)) → (𝑂𝑝) ∈ ran ((DIsoH‘𝐾)‘𝑊))
6045, 57, 59syl2anc 691 . . . . . . . . . . . . . . . 16 ((𝜑𝑝𝐴) → (𝑂𝑝) ∈ ran ((DIsoH‘𝐾)‘𝑊))
611, 58, 6dochoc 35674 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑂𝑝) ∈ ran ((DIsoH‘𝐾)‘𝑊)) → (𝑂‘(𝑂‘(𝑂𝑝))) = (𝑂𝑝))
6245, 60, 61syl2anc 691 . . . . . . . . . . . . . . 15 ((𝜑𝑝𝐴) → (𝑂‘(𝑂‘(𝑂𝑝))) = (𝑂𝑝))
6362adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑝𝐴) ∧ (𝑓𝐹 ∧ (𝐿𝑓) = (𝑂𝑝))) → (𝑂‘(𝑂‘(𝑂𝑝))) = (𝑂𝑝))
6455, 63eqtrd 2644 . . . . . . . . . . . . 13 (((𝜑𝑝𝐴) ∧ (𝑓𝐹 ∧ (𝐿𝑓) = (𝑂𝑝))) → (𝑂‘(𝑂‘(𝐿𝑓))) = (𝑂𝑝))
6547adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑝𝐴) ∧ (𝑓𝐹 ∧ (𝐿𝑓) = (𝑂𝑝))) → (𝑂𝑝) ∈ 𝐽)
6664, 65eqeltrd 2688 . . . . . . . . . . . 12 (((𝜑𝑝𝐴) ∧ (𝑓𝐹 ∧ (𝐿𝑓) = (𝑂𝑝))) → (𝑂‘(𝑂‘(𝐿𝑓))) ∈ 𝐽)
6752, 66, 31sylanbrc 695 . . . . . . . . . . 11 (((𝜑𝑝𝐴) ∧ (𝑓𝐹 ∧ (𝐿𝑓) = (𝑂𝑝))) → 𝑓𝑇)
681, 2, 58, 28dih1dimat 35637 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑝𝐴) → 𝑝 ∈ ran ((DIsoH‘𝐾)‘𝑊))
6945, 46, 68syl2anc 691 . . . . . . . . . . . . . 14 ((𝜑𝑝𝐴) → 𝑝 ∈ ran ((DIsoH‘𝐾)‘𝑊))
701, 58, 6dochoc 35674 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑝 ∈ ran ((DIsoH‘𝐾)‘𝑊)) → (𝑂‘(𝑂𝑝)) = 𝑝)
7145, 69, 70syl2anc 691 . . . . . . . . . . . . 13 ((𝜑𝑝𝐴) → (𝑂‘(𝑂𝑝)) = 𝑝)
7271adantr 480 . . . . . . . . . . . 12 (((𝜑𝑝𝐴) ∧ (𝑓𝐹 ∧ (𝐿𝑓) = (𝑂𝑝))) → (𝑂‘(𝑂𝑝)) = 𝑝)
7354, 72eqtr2d 2645 . . . . . . . . . . 11 (((𝜑𝑝𝐴) ∧ (𝑓𝐹 ∧ (𝐿𝑓) = (𝑂𝑝))) → 𝑝 = (𝑂‘(𝐿𝑓)))
7467, 73jca 553 . . . . . . . . . 10 (((𝜑𝑝𝐴) ∧ (𝑓𝐹 ∧ (𝐿𝑓) = (𝑂𝑝))) → (𝑓𝑇𝑝 = (𝑂‘(𝐿𝑓))))
7574ex 449 . . . . . . . . 9 ((𝜑𝑝𝐴) → ((𝑓𝐹 ∧ (𝐿𝑓) = (𝑂𝑝)) → (𝑓𝑇𝑝 = (𝑂‘(𝐿𝑓)))))
7675eximdv 1833 . . . . . . . 8 ((𝜑𝑝𝐴) → (∃𝑓(𝑓𝐹 ∧ (𝐿𝑓) = (𝑂𝑝)) → ∃𝑓(𝑓𝑇𝑝 = (𝑂‘(𝐿𝑓)))))
7751, 76mpd 15 . . . . . . 7 ((𝜑𝑝𝐴) → ∃𝑓(𝑓𝑇𝑝 = (𝑂‘(𝐿𝑓))))
78 df-rex 2902 . . . . . . 7 (∃𝑓𝑇 𝑝 = (𝑂‘(𝐿𝑓)) ↔ ∃𝑓(𝑓𝑇𝑝 = (𝑂‘(𝐿𝑓))))
7977, 78sylibr 223 . . . . . 6 ((𝜑𝑝𝐴) → ∃𝑓𝑇 𝑝 = (𝑂‘(𝐿𝑓)))
80 sseq1 3589 . . . . . . . 8 (𝑝 = (𝑂‘(𝐿𝑓)) → (𝑝𝑋 ↔ (𝑂‘(𝐿𝑓)) ⊆ 𝑋))
81 sseq1 3589 . . . . . . . 8 (𝑝 = (𝑂‘(𝐿𝑓)) → (𝑝𝑌 ↔ (𝑂‘(𝐿𝑓)) ⊆ 𝑌))
8280, 81imbi12d 333 . . . . . . 7 (𝑝 = (𝑂‘(𝐿𝑓)) → ((𝑝𝑋𝑝𝑌) ↔ ((𝑂‘(𝐿𝑓)) ⊆ 𝑋 → (𝑂‘(𝐿𝑓)) ⊆ 𝑌)))
8382adantl 481 . . . . . 6 ((𝜑𝑝 = (𝑂‘(𝐿𝑓))) → ((𝑝𝑋𝑝𝑌) ↔ ((𝑂‘(𝐿𝑓)) ⊆ 𝑋 → (𝑂‘(𝐿𝑓)) ⊆ 𝑌)))
8442, 79, 83ralxfrd 4805 . . . . 5 (𝜑 → (∀𝑝𝐴 (𝑝𝑋𝑝𝑌) ↔ ∀𝑓𝑇 ((𝑂‘(𝐿𝑓)) ⊆ 𝑋 → (𝑂‘(𝐿𝑓)) ⊆ 𝑌)))
8530, 84bitr2d 268 . . . 4 (𝜑 → (∀𝑓𝑇 ((𝑂‘(𝐿𝑓)) ⊆ 𝑋 → (𝑂‘(𝐿𝑓)) ⊆ 𝑌) ↔ 𝑋𝑌))
8627, 85sylibd 228 . . 3 (𝜑 → ({𝑓𝐶 ∣ (𝑂‘(𝐿𝑓)) ⊆ 𝑋} ⊆ {𝑓𝐶 ∣ (𝑂‘(𝐿𝑓)) ⊆ 𝑌} → 𝑋𝑌))
87 simplr 788 . . . . . 6 (((𝜑𝑋𝑌) ∧ 𝑓𝐶) → 𝑋𝑌)
88 sstr 3576 . . . . . . . 8 (((𝑂‘(𝐿𝑓)) ⊆ 𝑋𝑋𝑌) → (𝑂‘(𝐿𝑓)) ⊆ 𝑌)
8988ancoms 468 . . . . . . 7 ((𝑋𝑌 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑋) → (𝑂‘(𝐿𝑓)) ⊆ 𝑌)
9089a1i 11 . . . . . 6 (((𝜑𝑋𝑌) ∧ 𝑓𝐶) → ((𝑋𝑌 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑋) → (𝑂‘(𝐿𝑓)) ⊆ 𝑌))
9187, 90mpand 707 . . . . 5 (((𝜑𝑋𝑌) ∧ 𝑓𝐶) → ((𝑂‘(𝐿𝑓)) ⊆ 𝑋 → (𝑂‘(𝐿𝑓)) ⊆ 𝑌))
9291ss2rabdv 3646 . . . 4 ((𝜑𝑋𝑌) → {𝑓𝐶 ∣ (𝑂‘(𝐿𝑓)) ⊆ 𝑋} ⊆ {𝑓𝐶 ∣ (𝑂‘(𝐿𝑓)) ⊆ 𝑌})
9392ex 449 . . 3 (𝜑 → (𝑋𝑌 → {𝑓𝐶 ∣ (𝑂‘(𝐿𝑓)) ⊆ 𝑋} ⊆ {𝑓𝐶 ∣ (𝑂‘(𝐿𝑓)) ⊆ 𝑌}))
9486, 93impbid 201 . 2 (𝜑 → ({𝑓𝐶 ∣ (𝑂‘(𝐿𝑓)) ⊆ 𝑋} ⊆ {𝑓𝐶 ∣ (𝑂‘(𝐿𝑓)) ⊆ 𝑌} ↔ 𝑋𝑌))
9514, 94bitrd 267 1 (𝜑 → ((𝑀𝑋) ⊆ (𝑀𝑌) ↔ 𝑋𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wex 1695  wcel 1977  wral 2896  wrex 2897  {crab 2900  wss 3540  ran crn 5039  cfv 5804  Basecbs 15695  LModclmod 18686  LSubSpclss 18753  LVecclvec 18923  LSAtomsclsa 33279  LSHypclsh 33280  LFnlclfn 33362  LKerclk 33390  HLchlt 33655  LHypclh 34288  DVecHcdvh 35385  DIsoHcdih 35535  ocHcoch 35654  mapdcmpd 35931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-riotaBAD 33257
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-tpos 7239  df-undef 7286  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-sca 15784  df-vsca 15785  df-0g 15925  df-preset 16751  df-poset 16769  df-plt 16781  df-lub 16797  df-glb 16798  df-join 16799  df-meet 16800  df-p0 16862  df-p1 16863  df-lat 16869  df-clat 16931  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-grp 17248  df-minusg 17249  df-sbg 17250  df-subg 17414  df-cntz 17573  df-lsm 17874  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-oppr 18446  df-dvdsr 18464  df-unit 18465  df-invr 18495  df-dvr 18506  df-drng 18572  df-lmod 18688  df-lss 18754  df-lsp 18793  df-lvec 18924  df-lsatoms 33281  df-lshyp 33282  df-lfl 33363  df-lkr 33391  df-oposet 33481  df-ol 33483  df-oml 33484  df-covers 33571  df-ats 33572  df-atl 33603  df-cvlat 33627  df-hlat 33656  df-llines 33802  df-lplanes 33803  df-lvols 33804  df-lines 33805  df-psubsp 33807  df-pmap 33808  df-padd 34100  df-lhyp 34292  df-laut 34293  df-ldil 34408  df-ltrn 34409  df-trl 34464  df-tgrp 35049  df-tendo 35061  df-edring 35063  df-dveca 35309  df-disoa 35336  df-dvech 35386  df-dib 35446  df-dic 35480  df-dih 35536  df-doch 35655  df-djh 35702  df-mapd 35932
This theorem is referenced by:  mapdord  35945
  Copyright terms: Public domain W3C validator