Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdh7dN Structured version   Visualization version   GIF version

Theorem mapdh7dN 36057
 Description: Part (7) of [Baer] p. 48 line 10 (4 of 6 cases). (Contributed by NM, 2-May-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
mapdh7.h 𝐻 = (LHyp‘𝐾)
mapdh7.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdh7.v 𝑉 = (Base‘𝑈)
mapdh7.s = (-g𝑈)
mapdh7.o 0 = (0g𝑈)
mapdh7.n 𝑁 = (LSpan‘𝑈)
mapdh7.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapdh7.d 𝐷 = (Base‘𝐶)
mapdh7.r 𝑅 = (-g𝐶)
mapdh7.q 𝑄 = (0g𝐶)
mapdh7.j 𝐽 = (LSpan‘𝐶)
mapdh7.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdh7.i 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
mapdh7.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdh7.f (𝜑𝐹𝐷)
mapdh7.mn (𝜑 → (𝑀‘(𝑁‘{𝑢})) = (𝐽‘{𝐹}))
mapdh7.x (𝜑𝑢 ∈ (𝑉 ∖ { 0 }))
mapdh7.y (𝜑𝑣 ∈ (𝑉 ∖ { 0 }))
mapdh7.z (𝜑𝑤 ∈ (𝑉 ∖ { 0 }))
mapdh7.ne (𝜑 → (𝑁‘{𝑢}) ≠ (𝑁‘{𝑣}))
mapdh7.wn (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑢, 𝑣}))
mapdh7a (𝜑 → (𝐼‘⟨𝑢, 𝐹, 𝑣⟩) = 𝐺)
mapdh7.b (𝜑 → (𝐼‘⟨𝑢, 𝐹, 𝑤⟩) = 𝐸)
Assertion
Ref Expression
mapdh7dN (𝜑 → (𝐼‘⟨𝑣, 𝐺, 𝑤⟩) = 𝐸)
Distinct variable groups:   𝑥,,   𝐶,   𝐷,,𝑥   ,𝐸,𝑥   ,𝐹,𝑥   ,𝐺,𝑥   0 ,,𝑥   ,𝐽,𝑥   ,𝑀,𝑥   ,𝑁,𝑥   𝜑,   𝑥,𝑄   𝑢,,𝑣,𝑤,𝑥   𝑅,,𝑥   𝑈,
Allowed substitution hints:   𝜑(𝑥,𝑤,𝑣,𝑢)   𝐶(𝑥,𝑤,𝑣,𝑢)   𝐷(𝑤,𝑣,𝑢)   𝑄(𝑤,𝑣,𝑢,)   𝑅(𝑤,𝑣,𝑢)   𝑈(𝑥,𝑤,𝑣,𝑢)   𝐸(𝑤,𝑣,𝑢)   𝐹(𝑤,𝑣,𝑢)   𝐺(𝑤,𝑣,𝑢)   𝐻(𝑥,𝑤,𝑣,𝑢,)   𝐼(𝑥,𝑤,𝑣,𝑢,)   𝐽(𝑤,𝑣,𝑢)   𝐾(𝑥,𝑤,𝑣,𝑢,)   𝑀(𝑤,𝑣,𝑢)   (𝑤,𝑣,𝑢)   𝑁(𝑤,𝑣,𝑢)   𝑉(𝑥,𝑤,𝑣,𝑢,)   𝑊(𝑥,𝑤,𝑣,𝑢,)   0 (𝑤,𝑣,𝑢)

Proof of Theorem mapdh7dN
StepHypRef Expression
1 mapdh7.q . 2 𝑄 = (0g𝐶)
2 mapdh7.i . 2 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
3 mapdh7.h . 2 𝐻 = (LHyp‘𝐾)
4 mapdh7.m . 2 𝑀 = ((mapd‘𝐾)‘𝑊)
5 mapdh7.u . 2 𝑈 = ((DVecH‘𝐾)‘𝑊)
6 mapdh7.v . 2 𝑉 = (Base‘𝑈)
7 mapdh7.s . 2 = (-g𝑈)
8 mapdh7.o . 2 0 = (0g𝑈)
9 mapdh7.n . 2 𝑁 = (LSpan‘𝑈)
10 mapdh7.c . 2 𝐶 = ((LCDual‘𝐾)‘𝑊)
11 mapdh7.d . 2 𝐷 = (Base‘𝐶)
12 mapdh7.r . 2 𝑅 = (-g𝐶)
13 mapdh7.j . 2 𝐽 = (LSpan‘𝐶)
14 mapdh7.k . 2 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
15 mapdh7.f . 2 (𝜑𝐹𝐷)
16 mapdh7.mn . 2 (𝜑 → (𝑀‘(𝑁‘{𝑢})) = (𝐽‘{𝐹}))
17 mapdh7.x . 2 (𝜑𝑢 ∈ (𝑉 ∖ { 0 }))
18 mapdh7.y . 2 (𝜑𝑣 ∈ (𝑉 ∖ { 0 }))
19 mapdh7.z . 2 (𝜑𝑤 ∈ (𝑉 ∖ { 0 }))
203, 5, 14dvhlvec 35416 . . . . 5 (𝜑𝑈 ∈ LVec)
2118eldifad 3552 . . . . 5 (𝜑𝑣𝑉)
2219eldifad 3552 . . . . 5 (𝜑𝑤𝑉)
23 mapdh7.ne . . . . 5 (𝜑 → (𝑁‘{𝑢}) ≠ (𝑁‘{𝑣}))
24 mapdh7.wn . . . . 5 (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑢, 𝑣}))
256, 8, 9, 20, 17, 21, 22, 23, 24lspindp1 18954 . . . 4 (𝜑 → ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑣}) ∧ ¬ 𝑢 ∈ (𝑁‘{𝑤, 𝑣})))
2625simprd 478 . . 3 (𝜑 → ¬ 𝑢 ∈ (𝑁‘{𝑤, 𝑣}))
27 prcom 4211 . . . . 5 {𝑣, 𝑤} = {𝑤, 𝑣}
2827fveq2i 6106 . . . 4 (𝑁‘{𝑣, 𝑤}) = (𝑁‘{𝑤, 𝑣})
2928eleq2i 2680 . . 3 (𝑢 ∈ (𝑁‘{𝑣, 𝑤}) ↔ 𝑢 ∈ (𝑁‘{𝑤, 𝑣}))
3026, 29sylnibr 318 . 2 (𝜑 → ¬ 𝑢 ∈ (𝑁‘{𝑣, 𝑤}))
3117eldifad 3552 . . . . 5 (𝜑𝑢𝑉)
326, 9, 20, 22, 31, 21, 24lspindpi 18953 . . . 4 (𝜑 → ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑢}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑣})))
3332simprd 478 . . 3 (𝜑 → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑣}))
3433necomd 2837 . 2 (𝜑 → (𝑁‘{𝑣}) ≠ (𝑁‘{𝑤}))
35 mapdh7a . 2 (𝜑 → (𝐼‘⟨𝑢, 𝐹, 𝑣⟩) = 𝐺)
36 mapdh7.b . 2 (𝜑 → (𝐼‘⟨𝑢, 𝐹, 𝑤⟩) = 𝐸)
371, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 30, 34, 35, 36mapdheq4 36039 1 (𝜑 → (𝐼‘⟨𝑣, 𝐺, 𝑤⟩) = 𝐸)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  Vcvv 3173   ∖ cdif 3537  ifcif 4036  {csn 4125  {cpr 4127  ⟨cotp 4133   ↦ cmpt 4643  ‘cfv 5804  ℩crio 6510  (class class class)co 6549  1st c1st 7057  2nd c2nd 7058  Basecbs 15695  0gc0g 15923  -gcsg 17247  LSpanclspn 18792  HLchlt 33655  LHypclh 34288  DVecHcdvh 35385  LCDualclcd 35893  mapdcmpd 35931 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-riotaBAD 33257 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-ot 4134  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-tpos 7239  df-undef 7286  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-sca 15784  df-vsca 15785  df-0g 15925  df-mre 16069  df-mrc 16070  df-acs 16072  df-preset 16751  df-poset 16769  df-plt 16781  df-lub 16797  df-glb 16798  df-join 16799  df-meet 16800  df-p0 16862  df-p1 16863  df-lat 16869  df-clat 16931  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-grp 17248  df-minusg 17249  df-sbg 17250  df-subg 17414  df-cntz 17573  df-oppg 17599  df-lsm 17874  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-oppr 18446  df-dvdsr 18464  df-unit 18465  df-invr 18495  df-dvr 18506  df-drng 18572  df-lmod 18688  df-lss 18754  df-lsp 18793  df-lvec 18924  df-lsatoms 33281  df-lshyp 33282  df-lcv 33324  df-lfl 33363  df-lkr 33391  df-ldual 33429  df-oposet 33481  df-ol 33483  df-oml 33484  df-covers 33571  df-ats 33572  df-atl 33603  df-cvlat 33627  df-hlat 33656  df-llines 33802  df-lplanes 33803  df-lvols 33804  df-lines 33805  df-psubsp 33807  df-pmap 33808  df-padd 34100  df-lhyp 34292  df-laut 34293  df-ldil 34408  df-ltrn 34409  df-trl 34464  df-tgrp 35049  df-tendo 35061  df-edring 35063  df-dveca 35309  df-disoa 35336  df-dvech 35386  df-dib 35446  df-dic 35480  df-dih 35536  df-doch 35655  df-djh 35702  df-lcdual 35894  df-mapd 35932 This theorem is referenced by:  mapdh7fN  36058
 Copyright terms: Public domain W3C validator