Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lfl0f Structured version   Visualization version   GIF version

Theorem lfl0f 33374
Description: The zero function is a functional. (Contributed by NM, 16-Apr-2014.)
Hypotheses
Ref Expression
lfl0f.d 𝐷 = (Scalar‘𝑊)
lfl0f.o 0 = (0g𝐷)
lfl0f.v 𝑉 = (Base‘𝑊)
lfl0f.f 𝐹 = (LFnl‘𝑊)
Assertion
Ref Expression
lfl0f (𝑊 ∈ LMod → (𝑉 × { 0 }) ∈ 𝐹)

Proof of Theorem lfl0f
Dummy variables 𝑥 𝑟 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lfl0f.o . . . . 5 0 = (0g𝐷)
2 fvex 6113 . . . . 5 (0g𝐷) ∈ V
31, 2eqeltri 2684 . . . 4 0 ∈ V
43fconst 6004 . . 3 (𝑉 × { 0 }):𝑉⟶{ 0 }
5 lfl0f.d . . . . 5 𝐷 = (Scalar‘𝑊)
6 eqid 2610 . . . . 5 (Base‘𝐷) = (Base‘𝐷)
75, 6, 1lmod0cl 18712 . . . 4 (𝑊 ∈ LMod → 0 ∈ (Base‘𝐷))
87snssd 4281 . . 3 (𝑊 ∈ LMod → { 0 } ⊆ (Base‘𝐷))
9 fss 5969 . . 3 (((𝑉 × { 0 }):𝑉⟶{ 0 } ∧ { 0 } ⊆ (Base‘𝐷)) → (𝑉 × { 0 }):𝑉⟶(Base‘𝐷))
104, 8, 9sylancr 694 . 2 (𝑊 ∈ LMod → (𝑉 × { 0 }):𝑉⟶(Base‘𝐷))
115lmodring 18694 . . . . . . . . 9 (𝑊 ∈ LMod → 𝐷 ∈ Ring)
1211ad2antrr 758 . . . . . . . 8 (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥𝑉)) ∧ 𝑦𝑉) → 𝐷 ∈ Ring)
13 simplrl 796 . . . . . . . 8 (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥𝑉)) ∧ 𝑦𝑉) → 𝑟 ∈ (Base‘𝐷))
14 eqid 2610 . . . . . . . . 9 (.r𝐷) = (.r𝐷)
156, 14, 1ringrz 18411 . . . . . . . 8 ((𝐷 ∈ Ring ∧ 𝑟 ∈ (Base‘𝐷)) → (𝑟(.r𝐷) 0 ) = 0 )
1612, 13, 15syl2anc 691 . . . . . . 7 (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥𝑉)) ∧ 𝑦𝑉) → (𝑟(.r𝐷) 0 ) = 0 )
1716oveq1d 6564 . . . . . 6 (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥𝑉)) ∧ 𝑦𝑉) → ((𝑟(.r𝐷) 0 )(+g𝐷) 0 ) = ( 0 (+g𝐷) 0 ))
18 ringgrp 18375 . . . . . . . 8 (𝐷 ∈ Ring → 𝐷 ∈ Grp)
1912, 18syl 17 . . . . . . 7 (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥𝑉)) ∧ 𝑦𝑉) → 𝐷 ∈ Grp)
206, 1grpidcl 17273 . . . . . . . 8 (𝐷 ∈ Grp → 0 ∈ (Base‘𝐷))
2119, 20syl 17 . . . . . . 7 (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥𝑉)) ∧ 𝑦𝑉) → 0 ∈ (Base‘𝐷))
22 eqid 2610 . . . . . . . 8 (+g𝐷) = (+g𝐷)
236, 22, 1grplid 17275 . . . . . . 7 ((𝐷 ∈ Grp ∧ 0 ∈ (Base‘𝐷)) → ( 0 (+g𝐷) 0 ) = 0 )
2419, 21, 23syl2anc 691 . . . . . 6 (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥𝑉)) ∧ 𝑦𝑉) → ( 0 (+g𝐷) 0 ) = 0 )
2517, 24eqtrd 2644 . . . . 5 (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥𝑉)) ∧ 𝑦𝑉) → ((𝑟(.r𝐷) 0 )(+g𝐷) 0 ) = 0 )
26 simplrr 797 . . . . . . . 8 (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥𝑉)) ∧ 𝑦𝑉) → 𝑥𝑉)
273fvconst2 6374 . . . . . . . 8 (𝑥𝑉 → ((𝑉 × { 0 })‘𝑥) = 0 )
2826, 27syl 17 . . . . . . 7 (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥𝑉)) ∧ 𝑦𝑉) → ((𝑉 × { 0 })‘𝑥) = 0 )
2928oveq2d 6565 . . . . . 6 (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥𝑉)) ∧ 𝑦𝑉) → (𝑟(.r𝐷)((𝑉 × { 0 })‘𝑥)) = (𝑟(.r𝐷) 0 ))
303fvconst2 6374 . . . . . . 7 (𝑦𝑉 → ((𝑉 × { 0 })‘𝑦) = 0 )
3130adantl 481 . . . . . 6 (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥𝑉)) ∧ 𝑦𝑉) → ((𝑉 × { 0 })‘𝑦) = 0 )
3229, 31oveq12d 6567 . . . . 5 (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥𝑉)) ∧ 𝑦𝑉) → ((𝑟(.r𝐷)((𝑉 × { 0 })‘𝑥))(+g𝐷)((𝑉 × { 0 })‘𝑦)) = ((𝑟(.r𝐷) 0 )(+g𝐷) 0 ))
33 simpll 786 . . . . . . 7 (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥𝑉)) ∧ 𝑦𝑉) → 𝑊 ∈ LMod)
34 lfl0f.v . . . . . . . . 9 𝑉 = (Base‘𝑊)
35 eqid 2610 . . . . . . . . 9 ( ·𝑠𝑊) = ( ·𝑠𝑊)
3634, 5, 35, 6lmodvscl 18703 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑟 ∈ (Base‘𝐷) ∧ 𝑥𝑉) → (𝑟( ·𝑠𝑊)𝑥) ∈ 𝑉)
3733, 13, 26, 36syl3anc 1318 . . . . . . 7 (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥𝑉)) ∧ 𝑦𝑉) → (𝑟( ·𝑠𝑊)𝑥) ∈ 𝑉)
38 simpr 476 . . . . . . 7 (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥𝑉)) ∧ 𝑦𝑉) → 𝑦𝑉)
39 eqid 2610 . . . . . . . 8 (+g𝑊) = (+g𝑊)
4034, 39lmodvacl 18700 . . . . . . 7 ((𝑊 ∈ LMod ∧ (𝑟( ·𝑠𝑊)𝑥) ∈ 𝑉𝑦𝑉) → ((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦) ∈ 𝑉)
4133, 37, 38, 40syl3anc 1318 . . . . . 6 (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥𝑉)) ∧ 𝑦𝑉) → ((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦) ∈ 𝑉)
423fvconst2 6374 . . . . . 6 (((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦) ∈ 𝑉 → ((𝑉 × { 0 })‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) = 0 )
4341, 42syl 17 . . . . 5 (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥𝑉)) ∧ 𝑦𝑉) → ((𝑉 × { 0 })‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) = 0 )
4425, 32, 433eqtr4rd 2655 . . . 4 (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥𝑉)) ∧ 𝑦𝑉) → ((𝑉 × { 0 })‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) = ((𝑟(.r𝐷)((𝑉 × { 0 })‘𝑥))(+g𝐷)((𝑉 × { 0 })‘𝑦)))
4544ralrimiva 2949 . . 3 ((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥𝑉)) → ∀𝑦𝑉 ((𝑉 × { 0 })‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) = ((𝑟(.r𝐷)((𝑉 × { 0 })‘𝑥))(+g𝐷)((𝑉 × { 0 })‘𝑦)))
4645ralrimivva 2954 . 2 (𝑊 ∈ LMod → ∀𝑟 ∈ (Base‘𝐷)∀𝑥𝑉𝑦𝑉 ((𝑉 × { 0 })‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) = ((𝑟(.r𝐷)((𝑉 × { 0 })‘𝑥))(+g𝐷)((𝑉 × { 0 })‘𝑦)))
47 lfl0f.f . . 3 𝐹 = (LFnl‘𝑊)
4834, 39, 5, 35, 6, 22, 14, 47islfl 33365 . 2 (𝑊 ∈ LMod → ((𝑉 × { 0 }) ∈ 𝐹 ↔ ((𝑉 × { 0 }):𝑉⟶(Base‘𝐷) ∧ ∀𝑟 ∈ (Base‘𝐷)∀𝑥𝑉𝑦𝑉 ((𝑉 × { 0 })‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) = ((𝑟(.r𝐷)((𝑉 × { 0 })‘𝑥))(+g𝐷)((𝑉 × { 0 })‘𝑦)))))
4910, 46, 48mpbir2and 959 1 (𝑊 ∈ LMod → (𝑉 × { 0 }) ∈ 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wral 2896  Vcvv 3173  wss 3540  {csn 4125   × cxp 5036  wf 5800  cfv 5804  (class class class)co 6549  Basecbs 15695  +gcplusg 15768  .rcmulr 15769  Scalarcsca 15771   ·𝑠 cvsca 15772  0gc0g 15923  Grpcgrp 17245  Ringcrg 18370  LModclmod 18686  LFnlclfn 33362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-plusg 15781  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-mgp 18313  df-ring 18372  df-lmod 18688  df-lfl 33363
This theorem is referenced by:  lkr0f  33399  lkrscss  33403  ldualgrplem  33450  ldual0v  33455  ldual0vcl  33456  lclkrlem1  35813  lclkr  35840  lclkrs  35846
  Copyright terms: Public domain W3C validator