Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islfl Structured version   Visualization version   GIF version

Theorem islfl 33365
Description: The predicate "is a linear functional". (Contributed by NM, 15-Apr-2014.)
Hypotheses
Ref Expression
lflset.v 𝑉 = (Base‘𝑊)
lflset.a + = (+g𝑊)
lflset.d 𝐷 = (Scalar‘𝑊)
lflset.s · = ( ·𝑠𝑊)
lflset.k 𝐾 = (Base‘𝐷)
lflset.p = (+g𝐷)
lflset.t × = (.r𝐷)
lflset.f 𝐹 = (LFnl‘𝑊)
Assertion
Ref Expression
islfl (𝑊𝑋 → (𝐺𝐹 ↔ (𝐺:𝑉𝐾 ∧ ∀𝑟𝐾𝑥𝑉𝑦𝑉 (𝐺‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝐺𝑥)) (𝐺𝑦)))))
Distinct variable groups:   𝐾,𝑟   𝑥,𝑦,𝑉   𝑥,𝑟,𝑦,𝑊   𝐺,𝑟,𝑥,𝑦
Allowed substitution hints:   𝐷(𝑥,𝑦,𝑟)   + (𝑥,𝑦,𝑟)   (𝑥,𝑦,𝑟)   · (𝑥,𝑦,𝑟)   × (𝑥,𝑦,𝑟)   𝐹(𝑥,𝑦,𝑟)   𝐾(𝑥,𝑦)   𝑉(𝑟)   𝑋(𝑥,𝑦,𝑟)

Proof of Theorem islfl
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 lflset.v . . . 4 𝑉 = (Base‘𝑊)
2 lflset.a . . . 4 + = (+g𝑊)
3 lflset.d . . . 4 𝐷 = (Scalar‘𝑊)
4 lflset.s . . . 4 · = ( ·𝑠𝑊)
5 lflset.k . . . 4 𝐾 = (Base‘𝐷)
6 lflset.p . . . 4 = (+g𝐷)
7 lflset.t . . . 4 × = (.r𝐷)
8 lflset.f . . . 4 𝐹 = (LFnl‘𝑊)
91, 2, 3, 4, 5, 6, 7, 8lflset 33364 . . 3 (𝑊𝑋𝐹 = {𝑓 ∈ (𝐾𝑚 𝑉) ∣ ∀𝑟𝐾𝑥𝑉𝑦𝑉 (𝑓‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝑓𝑥)) (𝑓𝑦))})
109eleq2d 2673 . 2 (𝑊𝑋 → (𝐺𝐹𝐺 ∈ {𝑓 ∈ (𝐾𝑚 𝑉) ∣ ∀𝑟𝐾𝑥𝑉𝑦𝑉 (𝑓‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝑓𝑥)) (𝑓𝑦))}))
11 fveq1 6102 . . . . . . 7 (𝑓 = 𝐺 → (𝑓‘((𝑟 · 𝑥) + 𝑦)) = (𝐺‘((𝑟 · 𝑥) + 𝑦)))
12 fveq1 6102 . . . . . . . . 9 (𝑓 = 𝐺 → (𝑓𝑥) = (𝐺𝑥))
1312oveq2d 6565 . . . . . . . 8 (𝑓 = 𝐺 → (𝑟 × (𝑓𝑥)) = (𝑟 × (𝐺𝑥)))
14 fveq1 6102 . . . . . . . 8 (𝑓 = 𝐺 → (𝑓𝑦) = (𝐺𝑦))
1513, 14oveq12d 6567 . . . . . . 7 (𝑓 = 𝐺 → ((𝑟 × (𝑓𝑥)) (𝑓𝑦)) = ((𝑟 × (𝐺𝑥)) (𝐺𝑦)))
1611, 15eqeq12d 2625 . . . . . 6 (𝑓 = 𝐺 → ((𝑓‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝑓𝑥)) (𝑓𝑦)) ↔ (𝐺‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝐺𝑥)) (𝐺𝑦))))
17162ralbidv 2972 . . . . 5 (𝑓 = 𝐺 → (∀𝑥𝑉𝑦𝑉 (𝑓‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝑓𝑥)) (𝑓𝑦)) ↔ ∀𝑥𝑉𝑦𝑉 (𝐺‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝐺𝑥)) (𝐺𝑦))))
1817ralbidv 2969 . . . 4 (𝑓 = 𝐺 → (∀𝑟𝐾𝑥𝑉𝑦𝑉 (𝑓‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝑓𝑥)) (𝑓𝑦)) ↔ ∀𝑟𝐾𝑥𝑉𝑦𝑉 (𝐺‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝐺𝑥)) (𝐺𝑦))))
1918elrab 3331 . . 3 (𝐺 ∈ {𝑓 ∈ (𝐾𝑚 𝑉) ∣ ∀𝑟𝐾𝑥𝑉𝑦𝑉 (𝑓‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝑓𝑥)) (𝑓𝑦))} ↔ (𝐺 ∈ (𝐾𝑚 𝑉) ∧ ∀𝑟𝐾𝑥𝑉𝑦𝑉 (𝐺‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝐺𝑥)) (𝐺𝑦))))
20 fvex 6113 . . . . . 6 (Base‘𝐷) ∈ V
215, 20eqeltri 2684 . . . . 5 𝐾 ∈ V
22 fvex 6113 . . . . . 6 (Base‘𝑊) ∈ V
231, 22eqeltri 2684 . . . . 5 𝑉 ∈ V
2421, 23elmap 7772 . . . 4 (𝐺 ∈ (𝐾𝑚 𝑉) ↔ 𝐺:𝑉𝐾)
2524anbi1i 727 . . 3 ((𝐺 ∈ (𝐾𝑚 𝑉) ∧ ∀𝑟𝐾𝑥𝑉𝑦𝑉 (𝐺‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝐺𝑥)) (𝐺𝑦))) ↔ (𝐺:𝑉𝐾 ∧ ∀𝑟𝐾𝑥𝑉𝑦𝑉 (𝐺‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝐺𝑥)) (𝐺𝑦))))
2619, 25bitri 263 . 2 (𝐺 ∈ {𝑓 ∈ (𝐾𝑚 𝑉) ∣ ∀𝑟𝐾𝑥𝑉𝑦𝑉 (𝑓‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝑓𝑥)) (𝑓𝑦))} ↔ (𝐺:𝑉𝐾 ∧ ∀𝑟𝐾𝑥𝑉𝑦𝑉 (𝐺‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝐺𝑥)) (𝐺𝑦))))
2710, 26syl6bb 275 1 (𝑊𝑋 → (𝐺𝐹 ↔ (𝐺:𝑉𝐾 ∧ ∀𝑟𝐾𝑥𝑉𝑦𝑉 (𝐺‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝐺𝑥)) (𝐺𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wral 2896  {crab 2900  Vcvv 3173  wf 5800  cfv 5804  (class class class)co 6549  𝑚 cmap 7744  Basecbs 15695  +gcplusg 15768  .rcmulr 15769  Scalarcsca 15771   ·𝑠 cvsca 15772  LFnlclfn 33362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-map 7746  df-lfl 33363
This theorem is referenced by:  lfli  33366  islfld  33367  lflf  33368  lfl0f  33374  lfladdcl  33376  lflnegcl  33380  lshpkrcl  33421
  Copyright terms: Public domain W3C validator