Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lfli Structured version   Visualization version   GIF version

Theorem lfli 33366
Description: Property of a linear functional. (lnfnli 28283 analog.) (Contributed by NM, 16-Apr-2014.)
Hypotheses
Ref Expression
lflset.v 𝑉 = (Base‘𝑊)
lflset.a + = (+g𝑊)
lflset.d 𝐷 = (Scalar‘𝑊)
lflset.s · = ( ·𝑠𝑊)
lflset.k 𝐾 = (Base‘𝐷)
lflset.p = (+g𝐷)
lflset.t × = (.r𝐷)
lflset.f 𝐹 = (LFnl‘𝑊)
Assertion
Ref Expression
lfli ((𝑊𝑍𝐺𝐹 ∧ (𝑅𝐾𝑋𝑉𝑌𝑉)) → (𝐺‘((𝑅 · 𝑋) + 𝑌)) = ((𝑅 × (𝐺𝑋)) (𝐺𝑌)))

Proof of Theorem lfli
Dummy variables 𝑟 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lflset.v . . . . 5 𝑉 = (Base‘𝑊)
2 lflset.a . . . . 5 + = (+g𝑊)
3 lflset.d . . . . 5 𝐷 = (Scalar‘𝑊)
4 lflset.s . . . . 5 · = ( ·𝑠𝑊)
5 lflset.k . . . . 5 𝐾 = (Base‘𝐷)
6 lflset.p . . . . 5 = (+g𝐷)
7 lflset.t . . . . 5 × = (.r𝐷)
8 lflset.f . . . . 5 𝐹 = (LFnl‘𝑊)
91, 2, 3, 4, 5, 6, 7, 8islfl 33365 . . . 4 (𝑊𝑍 → (𝐺𝐹 ↔ (𝐺:𝑉𝐾 ∧ ∀𝑟𝐾𝑥𝑉𝑦𝑉 (𝐺‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝐺𝑥)) (𝐺𝑦)))))
109simplbda 652 . . 3 ((𝑊𝑍𝐺𝐹) → ∀𝑟𝐾𝑥𝑉𝑦𝑉 (𝐺‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝐺𝑥)) (𝐺𝑦)))
11103adant3 1074 . 2 ((𝑊𝑍𝐺𝐹 ∧ (𝑅𝐾𝑋𝑉𝑌𝑉)) → ∀𝑟𝐾𝑥𝑉𝑦𝑉 (𝐺‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝐺𝑥)) (𝐺𝑦)))
12 oveq1 6556 . . . . . . 7 (𝑟 = 𝑅 → (𝑟 · 𝑥) = (𝑅 · 𝑥))
1312oveq1d 6564 . . . . . 6 (𝑟 = 𝑅 → ((𝑟 · 𝑥) + 𝑦) = ((𝑅 · 𝑥) + 𝑦))
1413fveq2d 6107 . . . . 5 (𝑟 = 𝑅 → (𝐺‘((𝑟 · 𝑥) + 𝑦)) = (𝐺‘((𝑅 · 𝑥) + 𝑦)))
15 oveq1 6556 . . . . . 6 (𝑟 = 𝑅 → (𝑟 × (𝐺𝑥)) = (𝑅 × (𝐺𝑥)))
1615oveq1d 6564 . . . . 5 (𝑟 = 𝑅 → ((𝑟 × (𝐺𝑥)) (𝐺𝑦)) = ((𝑅 × (𝐺𝑥)) (𝐺𝑦)))
1714, 16eqeq12d 2625 . . . 4 (𝑟 = 𝑅 → ((𝐺‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝐺𝑥)) (𝐺𝑦)) ↔ (𝐺‘((𝑅 · 𝑥) + 𝑦)) = ((𝑅 × (𝐺𝑥)) (𝐺𝑦))))
18 oveq2 6557 . . . . . . 7 (𝑥 = 𝑋 → (𝑅 · 𝑥) = (𝑅 · 𝑋))
1918oveq1d 6564 . . . . . 6 (𝑥 = 𝑋 → ((𝑅 · 𝑥) + 𝑦) = ((𝑅 · 𝑋) + 𝑦))
2019fveq2d 6107 . . . . 5 (𝑥 = 𝑋 → (𝐺‘((𝑅 · 𝑥) + 𝑦)) = (𝐺‘((𝑅 · 𝑋) + 𝑦)))
21 fveq2 6103 . . . . . . 7 (𝑥 = 𝑋 → (𝐺𝑥) = (𝐺𝑋))
2221oveq2d 6565 . . . . . 6 (𝑥 = 𝑋 → (𝑅 × (𝐺𝑥)) = (𝑅 × (𝐺𝑋)))
2322oveq1d 6564 . . . . 5 (𝑥 = 𝑋 → ((𝑅 × (𝐺𝑥)) (𝐺𝑦)) = ((𝑅 × (𝐺𝑋)) (𝐺𝑦)))
2420, 23eqeq12d 2625 . . . 4 (𝑥 = 𝑋 → ((𝐺‘((𝑅 · 𝑥) + 𝑦)) = ((𝑅 × (𝐺𝑥)) (𝐺𝑦)) ↔ (𝐺‘((𝑅 · 𝑋) + 𝑦)) = ((𝑅 × (𝐺𝑋)) (𝐺𝑦))))
25 oveq2 6557 . . . . . 6 (𝑦 = 𝑌 → ((𝑅 · 𝑋) + 𝑦) = ((𝑅 · 𝑋) + 𝑌))
2625fveq2d 6107 . . . . 5 (𝑦 = 𝑌 → (𝐺‘((𝑅 · 𝑋) + 𝑦)) = (𝐺‘((𝑅 · 𝑋) + 𝑌)))
27 fveq2 6103 . . . . . 6 (𝑦 = 𝑌 → (𝐺𝑦) = (𝐺𝑌))
2827oveq2d 6565 . . . . 5 (𝑦 = 𝑌 → ((𝑅 × (𝐺𝑋)) (𝐺𝑦)) = ((𝑅 × (𝐺𝑋)) (𝐺𝑌)))
2926, 28eqeq12d 2625 . . . 4 (𝑦 = 𝑌 → ((𝐺‘((𝑅 · 𝑋) + 𝑦)) = ((𝑅 × (𝐺𝑋)) (𝐺𝑦)) ↔ (𝐺‘((𝑅 · 𝑋) + 𝑌)) = ((𝑅 × (𝐺𝑋)) (𝐺𝑌))))
3017, 24, 29rspc3v 3296 . . 3 ((𝑅𝐾𝑋𝑉𝑌𝑉) → (∀𝑟𝐾𝑥𝑉𝑦𝑉 (𝐺‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝐺𝑥)) (𝐺𝑦)) → (𝐺‘((𝑅 · 𝑋) + 𝑌)) = ((𝑅 × (𝐺𝑋)) (𝐺𝑌))))
31303ad2ant3 1077 . 2 ((𝑊𝑍𝐺𝐹 ∧ (𝑅𝐾𝑋𝑉𝑌𝑉)) → (∀𝑟𝐾𝑥𝑉𝑦𝑉 (𝐺‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝐺𝑥)) (𝐺𝑦)) → (𝐺‘((𝑅 · 𝑋) + 𝑌)) = ((𝑅 × (𝐺𝑋)) (𝐺𝑌))))
3211, 31mpd 15 1 ((𝑊𝑍𝐺𝐹 ∧ (𝑅𝐾𝑋𝑉𝑌𝑉)) → (𝐺‘((𝑅 · 𝑋) + 𝑌)) = ((𝑅 × (𝐺𝑋)) (𝐺𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1031   = wceq 1475  wcel 1977  wral 2896  wf 5800  cfv 5804  (class class class)co 6549  Basecbs 15695  +gcplusg 15768  .rcmulr 15769  Scalarcsca 15771   ·𝑠 cvsca 15772  LFnlclfn 33362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-map 7746  df-lfl 33363
This theorem is referenced by:  lfl0  33370  lfladd  33371  lflsub  33372  lflmul  33373  lflnegcl  33380  lflvscl  33382  lkrlss  33400  hdmapln1  36216
  Copyright terms: Public domain W3C validator