Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lshpkrcl Structured version   Visualization version   GIF version

Theorem lshpkrcl 33421
Description: The set 𝐺 defined by hyperplane 𝑈 is a linear functional. (Contributed by NM, 17-Jul-2014.)
Hypotheses
Ref Expression
lshpkr.v 𝑉 = (Base‘𝑊)
lshpkr.a + = (+g𝑊)
lshpkr.n 𝑁 = (LSpan‘𝑊)
lshpkr.p = (LSSum‘𝑊)
lshpkr.h 𝐻 = (LSHyp‘𝑊)
lshpkr.w (𝜑𝑊 ∈ LVec)
lshpkr.u (𝜑𝑈𝐻)
lshpkr.z (𝜑𝑍𝑉)
lshpkr.e (𝜑 → (𝑈 (𝑁‘{𝑍})) = 𝑉)
lshpkr.d 𝐷 = (Scalar‘𝑊)
lshpkr.k 𝐾 = (Base‘𝐷)
lshpkr.t · = ( ·𝑠𝑊)
lshpkr.g 𝐺 = (𝑥𝑉 ↦ (𝑘𝐾𝑦𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍))))
lshpkr.f 𝐹 = (LFnl‘𝑊)
Assertion
Ref Expression
lshpkrcl (𝜑𝐺𝐹)
Distinct variable groups:   𝑥,𝑘,𝑦, +   𝑘,𝐾,𝑥   𝑈,𝑘,𝑥,𝑦   𝐷,𝑘   · ,𝑘,𝑥,𝑦   𝑘,𝑍,𝑥,𝑦   𝑥,𝑉
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑘)   𝐷(𝑥,𝑦)   (𝑥,𝑦,𝑘)   𝐹(𝑥,𝑦,𝑘)   𝐺(𝑥,𝑦,𝑘)   𝐻(𝑥,𝑦,𝑘)   𝐾(𝑦)   𝑁(𝑥,𝑦,𝑘)   𝑉(𝑦,𝑘)   𝑊(𝑥,𝑦,𝑘)

Proof of Theorem lshpkrcl
Dummy variables 𝑎 𝑙 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lshpkr.v . . . . 5 𝑉 = (Base‘𝑊)
2 lshpkr.a . . . . 5 + = (+g𝑊)
3 lshpkr.n . . . . 5 𝑁 = (LSpan‘𝑊)
4 lshpkr.p . . . . 5 = (LSSum‘𝑊)
5 lshpkr.h . . . . 5 𝐻 = (LSHyp‘𝑊)
6 lshpkr.w . . . . . 6 (𝜑𝑊 ∈ LVec)
76adantr 480 . . . . 5 ((𝜑𝑎𝑉) → 𝑊 ∈ LVec)
8 lshpkr.u . . . . . 6 (𝜑𝑈𝐻)
98adantr 480 . . . . 5 ((𝜑𝑎𝑉) → 𝑈𝐻)
10 lshpkr.z . . . . . 6 (𝜑𝑍𝑉)
1110adantr 480 . . . . 5 ((𝜑𝑎𝑉) → 𝑍𝑉)
12 simpr 476 . . . . 5 ((𝜑𝑎𝑉) → 𝑎𝑉)
13 lshpkr.e . . . . . 6 (𝜑 → (𝑈 (𝑁‘{𝑍})) = 𝑉)
1413adantr 480 . . . . 5 ((𝜑𝑎𝑉) → (𝑈 (𝑁‘{𝑍})) = 𝑉)
15 lshpkr.d . . . . 5 𝐷 = (Scalar‘𝑊)
16 lshpkr.k . . . . 5 𝐾 = (Base‘𝐷)
17 lshpkr.t . . . . 5 · = ( ·𝑠𝑊)
181, 2, 3, 4, 5, 7, 9, 11, 12, 14, 15, 16, 17lshpsmreu 33414 . . . 4 ((𝜑𝑎𝑉) → ∃!𝑘𝐾𝑦𝑈 𝑎 = (𝑦 + (𝑘 · 𝑍)))
19 riotacl 6525 . . . 4 (∃!𝑘𝐾𝑦𝑈 𝑎 = (𝑦 + (𝑘 · 𝑍)) → (𝑘𝐾𝑦𝑈 𝑎 = (𝑦 + (𝑘 · 𝑍))) ∈ 𝐾)
2018, 19syl 17 . . 3 ((𝜑𝑎𝑉) → (𝑘𝐾𝑦𝑈 𝑎 = (𝑦 + (𝑘 · 𝑍))) ∈ 𝐾)
21 lshpkr.g . . . 4 𝐺 = (𝑥𝑉 ↦ (𝑘𝐾𝑦𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍))))
22 eqeq1 2614 . . . . . . 7 (𝑥 = 𝑎 → (𝑥 = (𝑦 + (𝑘 · 𝑍)) ↔ 𝑎 = (𝑦 + (𝑘 · 𝑍))))
2322rexbidv 3034 . . . . . 6 (𝑥 = 𝑎 → (∃𝑦𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍)) ↔ ∃𝑦𝑈 𝑎 = (𝑦 + (𝑘 · 𝑍))))
2423riotabidv 6513 . . . . 5 (𝑥 = 𝑎 → (𝑘𝐾𝑦𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍))) = (𝑘𝐾𝑦𝑈 𝑎 = (𝑦 + (𝑘 · 𝑍))))
2524cbvmptv 4678 . . . 4 (𝑥𝑉 ↦ (𝑘𝐾𝑦𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍)))) = (𝑎𝑉 ↦ (𝑘𝐾𝑦𝑈 𝑎 = (𝑦 + (𝑘 · 𝑍))))
2621, 25eqtri 2632 . . 3 𝐺 = (𝑎𝑉 ↦ (𝑘𝐾𝑦𝑈 𝑎 = (𝑦 + (𝑘 · 𝑍))))
2720, 26fmptd 6292 . 2 (𝜑𝐺:𝑉𝐾)
28 eqid 2610 . . . 4 (0g𝐷) = (0g𝐷)
291, 2, 3, 4, 5, 6, 8, 10, 10, 13, 15, 16, 17, 28, 21lshpkrlem6 33420 . . 3 ((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) → (𝐺‘((𝑙 · 𝑢) + 𝑣)) = ((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣)))
3029ralrimivvva 2955 . 2 (𝜑 → ∀𝑙𝐾𝑢𝑉𝑣𝑉 (𝐺‘((𝑙 · 𝑢) + 𝑣)) = ((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣)))
31 eqid 2610 . . . 4 (+g𝐷) = (+g𝐷)
32 eqid 2610 . . . 4 (.r𝐷) = (.r𝐷)
33 lshpkr.f . . . 4 𝐹 = (LFnl‘𝑊)
341, 2, 15, 17, 16, 31, 32, 33islfl 33365 . . 3 (𝑊 ∈ LVec → (𝐺𝐹 ↔ (𝐺:𝑉𝐾 ∧ ∀𝑙𝐾𝑢𝑉𝑣𝑉 (𝐺‘((𝑙 · 𝑢) + 𝑣)) = ((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣)))))
356, 34syl 17 . 2 (𝜑 → (𝐺𝐹 ↔ (𝐺:𝑉𝐾 ∧ ∀𝑙𝐾𝑢𝑉𝑣𝑉 (𝐺‘((𝑙 · 𝑢) + 𝑣)) = ((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣)))))
3627, 30, 35mpbir2and 959 1 (𝜑𝐺𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wral 2896  wrex 2897  ∃!wreu 2898  {csn 4125  cmpt 4643  wf 5800  cfv 5804  crio 6510  (class class class)co 6549  Basecbs 15695  +gcplusg 15768  .rcmulr 15769  Scalarcsca 15771   ·𝑠 cvsca 15772  0gc0g 15923  LSSumclsm 17872  LSpanclspn 18792  LVecclvec 18923  LSHypclsh 33280  LFnlclfn 33362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-tpos 7239  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-grp 17248  df-minusg 17249  df-sbg 17250  df-subg 17414  df-cntz 17573  df-lsm 17874  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-oppr 18446  df-dvdsr 18464  df-unit 18465  df-invr 18495  df-drng 18572  df-lmod 18688  df-lss 18754  df-lsp 18793  df-lvec 18924  df-lshyp 33282  df-lfl 33363
This theorem is referenced by:  lshpkr  33422  lshpkrex  33423  dochflcl  35782
  Copyright terms: Public domain W3C validator