Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  kur14lem9 Structured version   Visualization version   GIF version

Theorem kur14lem9 30450
Description: Lemma for kur14 30452. Since the set 𝑇 is closed under closure and complement, it contains the minimal set 𝑆 as a subset, so 𝑆 also has at most 14 elements. (Indeed 𝑆 = 𝑇, and it's not hard to prove this, but we don't need it for this proof.) (Contributed by Mario Carneiro, 11-Feb-2015.)
Hypotheses
Ref Expression
kur14lem.j 𝐽 ∈ Top
kur14lem.x 𝑋 = 𝐽
kur14lem.k 𝐾 = (cls‘𝐽)
kur14lem.i 𝐼 = (int‘𝐽)
kur14lem.a 𝐴𝑋
kur14lem.b 𝐵 = (𝑋 ∖ (𝐾𝐴))
kur14lem.c 𝐶 = (𝐾‘(𝑋𝐴))
kur14lem.d 𝐷 = (𝐼‘(𝐾𝐴))
kur14lem.t 𝑇 = ((({𝐴, (𝑋𝐴), (𝐾𝐴)} ∪ {𝐵, 𝐶, (𝐼𝐴)}) ∪ {(𝐾𝐵), 𝐷, (𝐾‘(𝐼𝐴))}) ∪ ({(𝐼𝐶), (𝐾𝐷), (𝐼‘(𝐾𝐵))} ∪ {(𝐾‘(𝐼𝐶)), (𝐼‘(𝐾‘(𝐼𝐴)))}))
kur14lem.s 𝑆 = {𝑥 ∈ 𝒫 𝒫 𝑋 ∣ (𝐴𝑥 ∧ ∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥)}
Assertion
Ref Expression
kur14lem9 (𝑆 ∈ Fin ∧ (#‘𝑆) ≤ 14)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐾   𝑥,𝑦,𝑇   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐴(𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦)   𝑆(𝑥,𝑦)   𝐼(𝑥,𝑦)   𝐽(𝑥,𝑦)   𝐾(𝑦)

Proof of Theorem kur14lem9
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 kur14lem.s . . 3 𝑆 = {𝑥 ∈ 𝒫 𝒫 𝑋 ∣ (𝐴𝑥 ∧ ∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥)}
2 vex 3176 . . . . . 6 𝑠 ∈ V
32elintrab 4423 . . . . 5 (𝑠 {𝑥 ∈ 𝒫 𝒫 𝑋 ∣ (𝐴𝑥 ∧ ∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥)} ↔ ∀𝑥 ∈ 𝒫 𝒫 𝑋((𝐴𝑥 ∧ ∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥) → 𝑠𝑥))
4 ssun1 3738 . . . . . . . 8 {𝐴, (𝑋𝐴), (𝐾𝐴)} ⊆ ({𝐴, (𝑋𝐴), (𝐾𝐴)} ∪ {𝐵, 𝐶, (𝐼𝐴)})
5 ssun1 3738 . . . . . . . . 9 ({𝐴, (𝑋𝐴), (𝐾𝐴)} ∪ {𝐵, 𝐶, (𝐼𝐴)}) ⊆ (({𝐴, (𝑋𝐴), (𝐾𝐴)} ∪ {𝐵, 𝐶, (𝐼𝐴)}) ∪ {(𝐾𝐵), 𝐷, (𝐾‘(𝐼𝐴))})
6 ssun1 3738 . . . . . . . . . 10 (({𝐴, (𝑋𝐴), (𝐾𝐴)} ∪ {𝐵, 𝐶, (𝐼𝐴)}) ∪ {(𝐾𝐵), 𝐷, (𝐾‘(𝐼𝐴))}) ⊆ ((({𝐴, (𝑋𝐴), (𝐾𝐴)} ∪ {𝐵, 𝐶, (𝐼𝐴)}) ∪ {(𝐾𝐵), 𝐷, (𝐾‘(𝐼𝐴))}) ∪ ({(𝐼𝐶), (𝐾𝐷), (𝐼‘(𝐾𝐵))} ∪ {(𝐾‘(𝐼𝐶)), (𝐼‘(𝐾‘(𝐼𝐴)))}))
7 kur14lem.t . . . . . . . . . 10 𝑇 = ((({𝐴, (𝑋𝐴), (𝐾𝐴)} ∪ {𝐵, 𝐶, (𝐼𝐴)}) ∪ {(𝐾𝐵), 𝐷, (𝐾‘(𝐼𝐴))}) ∪ ({(𝐼𝐶), (𝐾𝐷), (𝐼‘(𝐾𝐵))} ∪ {(𝐾‘(𝐼𝐶)), (𝐼‘(𝐾‘(𝐼𝐴)))}))
86, 7sseqtr4i 3601 . . . . . . . . 9 (({𝐴, (𝑋𝐴), (𝐾𝐴)} ∪ {𝐵, 𝐶, (𝐼𝐴)}) ∪ {(𝐾𝐵), 𝐷, (𝐾‘(𝐼𝐴))}) ⊆ 𝑇
95, 8sstri 3577 . . . . . . . 8 ({𝐴, (𝑋𝐴), (𝐾𝐴)} ∪ {𝐵, 𝐶, (𝐼𝐴)}) ⊆ 𝑇
104, 9sstri 3577 . . . . . . 7 {𝐴, (𝑋𝐴), (𝐾𝐴)} ⊆ 𝑇
11 kur14lem.j . . . . . . . . . . 11 𝐽 ∈ Top
12 kur14lem.x . . . . . . . . . . . 12 𝑋 = 𝐽
1312topopn 20536 . . . . . . . . . . 11 (𝐽 ∈ Top → 𝑋𝐽)
1411, 13ax-mp 5 . . . . . . . . . 10 𝑋𝐽
1514elexi 3186 . . . . . . . . 9 𝑋 ∈ V
16 kur14lem.a . . . . . . . . 9 𝐴𝑋
1715, 16ssexi 4731 . . . . . . . 8 𝐴 ∈ V
1817tpid1 4246 . . . . . . 7 𝐴 ∈ {𝐴, (𝑋𝐴), (𝐾𝐴)}
1910, 18sselii 3565 . . . . . 6 𝐴𝑇
20 kur14lem.k . . . . . . . . 9 𝐾 = (cls‘𝐽)
21 kur14lem.i . . . . . . . . 9 𝐼 = (int‘𝐽)
22 kur14lem.b . . . . . . . . 9 𝐵 = (𝑋 ∖ (𝐾𝐴))
23 kur14lem.c . . . . . . . . 9 𝐶 = (𝐾‘(𝑋𝐴))
24 kur14lem.d . . . . . . . . 9 𝐷 = (𝐼‘(𝐾𝐴))
2511, 12, 20, 21, 16, 22, 23, 24, 7kur14lem7 30448 . . . . . . . 8 (𝑦𝑇 → (𝑦𝑋 ∧ {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑇))
2625simprd 478 . . . . . . 7 (𝑦𝑇 → {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑇)
2726rgen 2906 . . . . . 6 𝑦𝑇 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑇
2825simpld 474 . . . . . . . . . 10 (𝑦𝑇𝑦𝑋)
2915elpw2 4755 . . . . . . . . . 10 (𝑦 ∈ 𝒫 𝑋𝑦𝑋)
3028, 29sylibr 223 . . . . . . . . 9 (𝑦𝑇𝑦 ∈ 𝒫 𝑋)
3130ssriv 3572 . . . . . . . 8 𝑇 ⊆ 𝒫 𝑋
3215pwex 4774 . . . . . . . . 9 𝒫 𝑋 ∈ V
3332elpw2 4755 . . . . . . . 8 (𝑇 ∈ 𝒫 𝒫 𝑋𝑇 ⊆ 𝒫 𝑋)
3431, 33mpbir 220 . . . . . . 7 𝑇 ∈ 𝒫 𝒫 𝑋
35 eleq2 2677 . . . . . . . . . 10 (𝑥 = 𝑇 → (𝐴𝑥𝐴𝑇))
36 sseq2 3590 . . . . . . . . . . 11 (𝑥 = 𝑇 → ({(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥 ↔ {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑇))
3736raleqbi1dv 3123 . . . . . . . . . 10 (𝑥 = 𝑇 → (∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥 ↔ ∀𝑦𝑇 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑇))
3835, 37anbi12d 743 . . . . . . . . 9 (𝑥 = 𝑇 → ((𝐴𝑥 ∧ ∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥) ↔ (𝐴𝑇 ∧ ∀𝑦𝑇 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑇)))
39 eleq2 2677 . . . . . . . . 9 (𝑥 = 𝑇 → (𝑠𝑥𝑠𝑇))
4038, 39imbi12d 333 . . . . . . . 8 (𝑥 = 𝑇 → (((𝐴𝑥 ∧ ∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥) → 𝑠𝑥) ↔ ((𝐴𝑇 ∧ ∀𝑦𝑇 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑇) → 𝑠𝑇)))
4140rspccv 3279 . . . . . . 7 (∀𝑥 ∈ 𝒫 𝒫 𝑋((𝐴𝑥 ∧ ∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥) → 𝑠𝑥) → (𝑇 ∈ 𝒫 𝒫 𝑋 → ((𝐴𝑇 ∧ ∀𝑦𝑇 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑇) → 𝑠𝑇)))
4234, 41mpi 20 . . . . . 6 (∀𝑥 ∈ 𝒫 𝒫 𝑋((𝐴𝑥 ∧ ∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥) → 𝑠𝑥) → ((𝐴𝑇 ∧ ∀𝑦𝑇 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑇) → 𝑠𝑇))
4319, 27, 42mp2ani 710 . . . . 5 (∀𝑥 ∈ 𝒫 𝒫 𝑋((𝐴𝑥 ∧ ∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥) → 𝑠𝑥) → 𝑠𝑇)
443, 43sylbi 206 . . . 4 (𝑠 {𝑥 ∈ 𝒫 𝒫 𝑋 ∣ (𝐴𝑥 ∧ ∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥)} → 𝑠𝑇)
4544ssriv 3572 . . 3 {𝑥 ∈ 𝒫 𝒫 𝑋 ∣ (𝐴𝑥 ∧ ∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥)} ⊆ 𝑇
461, 45eqsstri 3598 . 2 𝑆𝑇
4711, 12, 20, 21, 16, 22, 23, 24, 7kur14lem8 30449 . 2 (𝑇 ∈ Fin ∧ (#‘𝑇) ≤ 14)
48 1nn0 11185 . . 3 1 ∈ ℕ0
49 4nn0 11188 . . 3 4 ∈ ℕ0
5048, 49deccl 11388 . 2 14 ∈ ℕ0
5146, 47, 50hashsslei 13073 1 (𝑆 ∈ Fin ∧ (#‘𝑆) ≤ 14)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wral 2896  {crab 2900  cdif 3537  cun 3538  wss 3540  𝒫 cpw 4108  {cpr 4127  {ctp 4129   cuni 4372   cint 4410   class class class wbr 4583  cfv 5804  Fincfn 7841  1c1 9816  cle 9954  4c4 10949  cdc 11369  #chash 12979  Topctop 20517  intcnt 20631  clsccl 20632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-xnn0 11241  df-z 11255  df-dec 11370  df-uz 11564  df-fz 12198  df-hash 12980  df-top 20521  df-cld 20633  df-ntr 20634  df-cls 20635
This theorem is referenced by:  kur14lem10  30451
  Copyright terms: Public domain W3C validator