Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  kur14lem9 Structured version   Unicode version

Theorem kur14lem9 27102
Description: Lemma for kur14 27104. Since the set  T is closed under closure and complement, it contains the minimal set  S as a subset, so  S also has at most  1 4 elements. (Indeed  S  =  T, and it's not hard to prove this, but we don't need it for this proof.) (Contributed by Mario Carneiro, 11-Feb-2015.)
Hypotheses
Ref Expression
kur14lem.j  |-  J  e. 
Top
kur14lem.x  |-  X  = 
U. J
kur14lem.k  |-  K  =  ( cls `  J
)
kur14lem.i  |-  I  =  ( int `  J
)
kur14lem.a  |-  A  C_  X
kur14lem.b  |-  B  =  ( X  \  ( K `  A )
)
kur14lem.c  |-  C  =  ( K `  ( X  \  A ) )
kur14lem.d  |-  D  =  ( I `  ( K `  A )
)
kur14lem.t  |-  T  =  ( ( ( { A ,  ( X 
\  A ) ,  ( K `  A
) }  u.  { B ,  C , 
( I `  A
) } )  u. 
{ ( K `  B ) ,  D ,  ( K `  ( I `  A
) ) } )  u.  ( { ( I `  C ) ,  ( K `  D ) ,  ( I `  ( K `
 B ) ) }  u.  { ( K `  ( I `
 C ) ) ,  ( I `  ( K `  ( I `
 A ) ) ) } ) )
kur14lem.s  |-  S  = 
|^| { x  e.  ~P ~P X  |  ( A  e.  x  /\  A. y  e.  x  {
( X  \  y
) ,  ( K `
 y ) } 
C_  x ) }
Assertion
Ref Expression
kur14lem9  |-  ( S  e.  Fin  /\  ( # `
 S )  <_ ; 1 4 )
Distinct variable groups:    x, A    x, K    x, y, T   
x, X, y
Allowed substitution hints:    A( y)    B( x, y)    C( x, y)    D( x, y)    S( x, y)    I( x, y)    J( x, y)    K( y)

Proof of Theorem kur14lem9
Dummy variable  s is distinct from all other variables.
StepHypRef Expression
1 kur14lem.s . . 3  |-  S  = 
|^| { x  e.  ~P ~P X  |  ( A  e.  x  /\  A. y  e.  x  {
( X  \  y
) ,  ( K `
 y ) } 
C_  x ) }
2 vex 2975 . . . . . 6  |-  s  e. 
_V
32elintrab 4140 . . . . 5  |-  ( s  e.  |^| { x  e. 
~P ~P X  | 
( A  e.  x  /\  A. y  e.  x  { ( X  \ 
y ) ,  ( K `  y ) }  C_  x ) } 
<-> 
A. x  e.  ~P  ~P X ( ( A  e.  x  /\  A. y  e.  x  {
( X  \  y
) ,  ( K `
 y ) } 
C_  x )  -> 
s  e.  x ) )
4 ssun1 3519 . . . . . . . 8  |-  { A ,  ( X  \  A ) ,  ( K `  A ) }  C_  ( { A ,  ( X  \  A ) ,  ( K `  A ) }  u.  { B ,  C ,  ( I `
 A ) } )
5 ssun1 3519 . . . . . . . . 9  |-  ( { A ,  ( X 
\  A ) ,  ( K `  A
) }  u.  { B ,  C , 
( I `  A
) } )  C_  ( ( { A ,  ( X  \  A ) ,  ( K `  A ) }  u.  { B ,  C ,  ( I `
 A ) } )  u.  { ( K `  B ) ,  D ,  ( K `  ( I `
 A ) ) } )
6 ssun1 3519 . . . . . . . . . 10  |-  ( ( { A ,  ( X  \  A ) ,  ( K `  A ) }  u.  { B ,  C , 
( I `  A
) } )  u. 
{ ( K `  B ) ,  D ,  ( K `  ( I `  A
) ) } ) 
C_  ( ( ( { A ,  ( X  \  A ) ,  ( K `  A ) }  u.  { B ,  C , 
( I `  A
) } )  u. 
{ ( K `  B ) ,  D ,  ( K `  ( I `  A
) ) } )  u.  ( { ( I `  C ) ,  ( K `  D ) ,  ( I `  ( K `
 B ) ) }  u.  { ( K `  ( I `
 C ) ) ,  ( I `  ( K `  ( I `
 A ) ) ) } ) )
7 kur14lem.t . . . . . . . . . 10  |-  T  =  ( ( ( { A ,  ( X 
\  A ) ,  ( K `  A
) }  u.  { B ,  C , 
( I `  A
) } )  u. 
{ ( K `  B ) ,  D ,  ( K `  ( I `  A
) ) } )  u.  ( { ( I `  C ) ,  ( K `  D ) ,  ( I `  ( K `
 B ) ) }  u.  { ( K `  ( I `
 C ) ) ,  ( I `  ( K `  ( I `
 A ) ) ) } ) )
86, 7sseqtr4i 3389 . . . . . . . . 9  |-  ( ( { A ,  ( X  \  A ) ,  ( K `  A ) }  u.  { B ,  C , 
( I `  A
) } )  u. 
{ ( K `  B ) ,  D ,  ( K `  ( I `  A
) ) } ) 
C_  T
95, 8sstri 3365 . . . . . . . 8  |-  ( { A ,  ( X 
\  A ) ,  ( K `  A
) }  u.  { B ,  C , 
( I `  A
) } )  C_  T
104, 9sstri 3365 . . . . . . 7  |-  { A ,  ( X  \  A ) ,  ( K `  A ) }  C_  T
11 kur14lem.j . . . . . . . . . . 11  |-  J  e. 
Top
12 kur14lem.x . . . . . . . . . . . 12  |-  X  = 
U. J
1312topopn 18519 . . . . . . . . . . 11  |-  ( J  e.  Top  ->  X  e.  J )
1411, 13ax-mp 5 . . . . . . . . . 10  |-  X  e.  J
1514elexi 2982 . . . . . . . . 9  |-  X  e. 
_V
16 kur14lem.a . . . . . . . . 9  |-  A  C_  X
1715, 16ssexi 4437 . . . . . . . 8  |-  A  e. 
_V
1817tpid1 3988 . . . . . . 7  |-  A  e. 
{ A ,  ( X  \  A ) ,  ( K `  A ) }
1910, 18sselii 3353 . . . . . 6  |-  A  e.  T
20 kur14lem.k . . . . . . . . 9  |-  K  =  ( cls `  J
)
21 kur14lem.i . . . . . . . . 9  |-  I  =  ( int `  J
)
22 kur14lem.b . . . . . . . . 9  |-  B  =  ( X  \  ( K `  A )
)
23 kur14lem.c . . . . . . . . 9  |-  C  =  ( K `  ( X  \  A ) )
24 kur14lem.d . . . . . . . . 9  |-  D  =  ( I `  ( K `  A )
)
2511, 12, 20, 21, 16, 22, 23, 24, 7kur14lem7 27100 . . . . . . . 8  |-  ( y  e.  T  ->  (
y  C_  X  /\  { ( X  \  y
) ,  ( K `
 y ) } 
C_  T ) )
2625simprd 463 . . . . . . 7  |-  ( y  e.  T  ->  { ( X  \  y ) ,  ( K `  y ) }  C_  T )
2726rgen 2781 . . . . . 6  |-  A. y  e.  T  { ( X  \  y ) ,  ( K `  y
) }  C_  T
2825simpld 459 . . . . . . . . . 10  |-  ( y  e.  T  ->  y  C_  X )
2915elpw2 4456 . . . . . . . . . 10  |-  ( y  e.  ~P X  <->  y  C_  X )
3028, 29sylibr 212 . . . . . . . . 9  |-  ( y  e.  T  ->  y  e.  ~P X )
3130ssriv 3360 . . . . . . . 8  |-  T  C_  ~P X
3215pwex 4475 . . . . . . . . 9  |-  ~P X  e.  _V
3332elpw2 4456 . . . . . . . 8  |-  ( T  e.  ~P ~P X  <->  T 
C_  ~P X )
3431, 33mpbir 209 . . . . . . 7  |-  T  e. 
~P ~P X
35 eleq2 2504 . . . . . . . . . 10  |-  ( x  =  T  ->  ( A  e.  x  <->  A  e.  T ) )
36 sseq2 3378 . . . . . . . . . . 11  |-  ( x  =  T  ->  ( { ( X  \ 
y ) ,  ( K `  y ) }  C_  x  <->  { ( X  \  y ) ,  ( K `  y
) }  C_  T
) )
3736raleqbi1dv 2925 . . . . . . . . . 10  |-  ( x  =  T  ->  ( A. y  e.  x  { ( X  \ 
y ) ,  ( K `  y ) }  C_  x  <->  A. y  e.  T  { ( X  \  y ) ,  ( K `  y
) }  C_  T
) )
3835, 37anbi12d 710 . . . . . . . . 9  |-  ( x  =  T  ->  (
( A  e.  x  /\  A. y  e.  x  { ( X  \ 
y ) ,  ( K `  y ) }  C_  x )  <->  ( A  e.  T  /\  A. y  e.  T  {
( X  \  y
) ,  ( K `
 y ) } 
C_  T ) ) )
39 eleq2 2504 . . . . . . . . 9  |-  ( x  =  T  ->  (
s  e.  x  <->  s  e.  T ) )
4038, 39imbi12d 320 . . . . . . . 8  |-  ( x  =  T  ->  (
( ( A  e.  x  /\  A. y  e.  x  { ( X  \  y ) ,  ( K `  y
) }  C_  x
)  ->  s  e.  x )  <->  ( ( A  e.  T  /\  A. y  e.  T  {
( X  \  y
) ,  ( K `
 y ) } 
C_  T )  -> 
s  e.  T ) ) )
4140rspccv 3070 . . . . . . 7  |-  ( A. x  e.  ~P  ~P X
( ( A  e.  x  /\  A. y  e.  x  { ( X  \  y ) ,  ( K `  y
) }  C_  x
)  ->  s  e.  x )  ->  ( T  e.  ~P ~P X  ->  ( ( A  e.  T  /\  A. y  e.  T  {
( X  \  y
) ,  ( K `
 y ) } 
C_  T )  -> 
s  e.  T ) ) )
4234, 41mpi 17 . . . . . 6  |-  ( A. x  e.  ~P  ~P X
( ( A  e.  x  /\  A. y  e.  x  { ( X  \  y ) ,  ( K `  y
) }  C_  x
)  ->  s  e.  x )  ->  (
( A  e.  T  /\  A. y  e.  T  { ( X  \ 
y ) ,  ( K `  y ) }  C_  T )  ->  s  e.  T ) )
4319, 27, 42mp2ani 678 . . . . 5  |-  ( A. x  e.  ~P  ~P X
( ( A  e.  x  /\  A. y  e.  x  { ( X  \  y ) ,  ( K `  y
) }  C_  x
)  ->  s  e.  x )  ->  s  e.  T )
443, 43sylbi 195 . . . 4  |-  ( s  e.  |^| { x  e. 
~P ~P X  | 
( A  e.  x  /\  A. y  e.  x  { ( X  \ 
y ) ,  ( K `  y ) }  C_  x ) }  ->  s  e.  T
)
4544ssriv 3360 . . 3  |-  |^| { x  e.  ~P ~P X  | 
( A  e.  x  /\  A. y  e.  x  { ( X  \ 
y ) ,  ( K `  y ) }  C_  x ) }  C_  T
461, 45eqsstri 3386 . 2  |-  S  C_  T
4711, 12, 20, 21, 16, 22, 23, 24, 7kur14lem8 27101 . 2  |-  ( T  e.  Fin  /\  ( # `
 T )  <_ ; 1 4 )
48 1nn0 10595 . . 3  |-  1  e.  NN0
49 4nn0 10598 . . 3  |-  4  e.  NN0
5048, 49deccl 10769 . 2  |- ; 1 4  e.  NN0
5146, 47, 50hashsslei 12176 1  |-  ( S  e.  Fin  /\  ( # `
 S )  <_ ; 1 4 )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1369    e. wcel 1756   A.wral 2715   {crab 2719    \ cdif 3325    u. cun 3326    C_ wss 3328   ~Pcpw 3860   {cpr 3879   {ctp 3881   U.cuni 4091   |^|cint 4128   class class class wbr 4292   ` cfv 5418   Fincfn 7310   1c1 9283    <_ cle 9419   4c4 10373  ;cdc 10755   #chash 12103   Topctop 18498   intcnt 18621   clsccl 18622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4403  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372  ax-cnex 9338  ax-resscn 9339  ax-1cn 9340  ax-icn 9341  ax-addcl 9342  ax-addrcl 9343  ax-mulcl 9344  ax-mulrcl 9345  ax-mulcom 9346  ax-addass 9347  ax-mulass 9348  ax-distr 9349  ax-i2m1 9350  ax-1ne0 9351  ax-1rid 9352  ax-rnegex 9353  ax-rrecex 9354  ax-cnre 9355  ax-pre-lttri 9356  ax-pre-lttrn 9357  ax-pre-ltadd 9358  ax-pre-mulgt0 9359
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-nel 2609  df-ral 2720  df-rex 2721  df-reu 2722  df-rmo 2723  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-pss 3344  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-tp 3882  df-op 3884  df-uni 4092  df-int 4129  df-iun 4173  df-iin 4174  df-br 4293  df-opab 4351  df-mpt 4352  df-tr 4386  df-eprel 4632  df-id 4636  df-po 4641  df-so 4642  df-fr 4679  df-we 4681  df-ord 4722  df-on 4723  df-lim 4724  df-suc 4725  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-riota 6052  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-om 6477  df-1st 6577  df-2nd 6578  df-recs 6832  df-rdg 6866  df-1o 6920  df-oadd 6924  df-er 7101  df-en 7311  df-dom 7312  df-sdom 7313  df-fin 7314  df-card 8109  df-cda 8337  df-pnf 9420  df-mnf 9421  df-xr 9422  df-ltxr 9423  df-le 9424  df-sub 9597  df-neg 9598  df-nn 10323  df-2 10380  df-3 10381  df-4 10382  df-5 10383  df-6 10384  df-7 10385  df-8 10386  df-9 10387  df-10 10388  df-n0 10580  df-z 10647  df-dec 10756  df-uz 10862  df-fz 11438  df-hash 12104  df-top 18503  df-cld 18623  df-ntr 18624  df-cls 18625
This theorem is referenced by:  kur14lem10  27103
  Copyright terms: Public domain W3C validator