MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  istps Structured version   Visualization version   GIF version

Theorem istps 20551
Description: Express the predicate "is a topological space." (Contributed by Mario Carneiro, 13-Aug-2015.)
Hypotheses
Ref Expression
istps.a 𝐴 = (Base‘𝐾)
istps.j 𝐽 = (TopOpen‘𝐾)
Assertion
Ref Expression
istps (𝐾 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝐴))

Proof of Theorem istps
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 df-topsp 20524 . . 3 TopSp = {𝑓 ∣ (TopOpen‘𝑓) ∈ (TopOn‘(Base‘𝑓))}
21eleq2i 2680 . 2 (𝐾 ∈ TopSp ↔ 𝐾 ∈ {𝑓 ∣ (TopOpen‘𝑓) ∈ (TopOn‘(Base‘𝑓))})
3 topontop 20541 . . . 4 (𝐽 ∈ (TopOn‘𝐴) → 𝐽 ∈ Top)
4 0ntop 20535 . . . . . 6 ¬ ∅ ∈ Top
5 istps.j . . . . . . . 8 𝐽 = (TopOpen‘𝐾)
6 fvprc 6097 . . . . . . . 8 𝐾 ∈ V → (TopOpen‘𝐾) = ∅)
75, 6syl5eq 2656 . . . . . . 7 𝐾 ∈ V → 𝐽 = ∅)
87eleq1d 2672 . . . . . 6 𝐾 ∈ V → (𝐽 ∈ Top ↔ ∅ ∈ Top))
94, 8mtbiri 316 . . . . 5 𝐾 ∈ V → ¬ 𝐽 ∈ Top)
109con4i 112 . . . 4 (𝐽 ∈ Top → 𝐾 ∈ V)
113, 10syl 17 . . 3 (𝐽 ∈ (TopOn‘𝐴) → 𝐾 ∈ V)
12 fveq2 6103 . . . . 5 (𝑓 = 𝐾 → (TopOpen‘𝑓) = (TopOpen‘𝐾))
1312, 5syl6eqr 2662 . . . 4 (𝑓 = 𝐾 → (TopOpen‘𝑓) = 𝐽)
14 fveq2 6103 . . . . . 6 (𝑓 = 𝐾 → (Base‘𝑓) = (Base‘𝐾))
15 istps.a . . . . . 6 𝐴 = (Base‘𝐾)
1614, 15syl6eqr 2662 . . . . 5 (𝑓 = 𝐾 → (Base‘𝑓) = 𝐴)
1716fveq2d 6107 . . . 4 (𝑓 = 𝐾 → (TopOn‘(Base‘𝑓)) = (TopOn‘𝐴))
1813, 17eleq12d 2682 . . 3 (𝑓 = 𝐾 → ((TopOpen‘𝑓) ∈ (TopOn‘(Base‘𝑓)) ↔ 𝐽 ∈ (TopOn‘𝐴)))
1911, 18elab3 3327 . 2 (𝐾 ∈ {𝑓 ∣ (TopOpen‘𝑓) ∈ (TopOn‘(Base‘𝑓))} ↔ 𝐽 ∈ (TopOn‘𝐴))
202, 19bitri 263 1 (𝐾 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 195   = wceq 1475  wcel 1977  {cab 2596  Vcvv 3173  c0 3874  cfv 5804  Basecbs 15695  TopOpenctopn 15905  Topctop 20517  TopOnctopon 20518  TopSpctps 20519
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-iota 5768  df-fun 5806  df-fv 5812  df-top 20521  df-topon 20523  df-topsp 20524
This theorem is referenced by:  istps2  20552  tpspropd  20555  tsettps  20558  indistps2ALT  20628  resstps  20801  prdstps  21242  imastps  21334  xpstopnlem2  21424  tmdtopon  21695  tgptopon  21696  istgp2  21705  oppgtmd  21711  distgp  21713  indistgp  21714  symgtgp  21715  qustgplem  21734  prdstmdd  21737  eltsms  21746  tsmscls  21751  tsmsgsum  21752  tsmsid  21753  tsmsmhm  21759  tsmsadd  21760  dvrcn  21797  cnmpt1vsca  21807  cnmpt2vsca  21808  tlmtgp  21809  ressusp  21879  tustps  21887  ucncn  21899  neipcfilu  21910  cnextucn  21917  ucnextcn  21918  isxms2  22063  ressxms  22140  prdsxmslem2  22144  nrgtrg  22304  cnfldtopon  22396  cnmpt1ds  22453  cnmpt2ds  22454  nmcn  22455  cnmpt1ip  22854  cnmpt2ip  22855  csscld  22856  clsocv  22857  minveclem4a  23009  mhmhmeotmd  29301  rrxtopon  39184  qndenserrnopnlem  39193
  Copyright terms: Public domain W3C validator