MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmpt2vsca Structured version   Visualization version   GIF version

Theorem cnmpt2vsca 21808
Description: Continuity of scalar multiplication; analogue of cnmpt22f 21288 which cannot be used directly because ·𝑠 is not a function. (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
tlmtrg.f 𝐹 = (Scalar‘𝑊)
cnmpt1vsca.t · = ( ·𝑠𝑊)
cnmpt1vsca.j 𝐽 = (TopOpen‘𝑊)
cnmpt1vsca.k 𝐾 = (TopOpen‘𝐹)
cnmpt1vsca.w (𝜑𝑊 ∈ TopMod)
cnmpt1vsca.l (𝜑𝐿 ∈ (TopOn‘𝑋))
cnmpt2vsca.m (𝜑𝑀 ∈ (TopOn‘𝑌))
cnmpt2vsca.a (𝜑 → (𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐿 ×t 𝑀) Cn 𝐾))
cnmpt2vsca.b (𝜑 → (𝑥𝑋, 𝑦𝑌𝐵) ∈ ((𝐿 ×t 𝑀) Cn 𝐽))
Assertion
Ref Expression
cnmpt2vsca (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ (𝐴 · 𝐵)) ∈ ((𝐿 ×t 𝑀) Cn 𝐽))
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝐽,𝑦   𝑥,𝐾,𝑦   𝑥,𝐿   𝜑,𝑥,𝑦   𝑥,𝑊,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   · (𝑥,𝑦)   𝐿(𝑦)   𝑀(𝑥,𝑦)

Proof of Theorem cnmpt2vsca
StepHypRef Expression
1 cnmpt1vsca.l . . . . . . . . . 10 (𝜑𝐿 ∈ (TopOn‘𝑋))
2 cnmpt2vsca.m . . . . . . . . . 10 (𝜑𝑀 ∈ (TopOn‘𝑌))
3 txtopon 21204 . . . . . . . . . 10 ((𝐿 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ (TopOn‘𝑌)) → (𝐿 ×t 𝑀) ∈ (TopOn‘(𝑋 × 𝑌)))
41, 2, 3syl2anc 691 . . . . . . . . 9 (𝜑 → (𝐿 ×t 𝑀) ∈ (TopOn‘(𝑋 × 𝑌)))
5 cnmpt1vsca.w . . . . . . . . . . 11 (𝜑𝑊 ∈ TopMod)
6 tlmtrg.f . . . . . . . . . . . 12 𝐹 = (Scalar‘𝑊)
76tlmscatps 21804 . . . . . . . . . . 11 (𝑊 ∈ TopMod → 𝐹 ∈ TopSp)
85, 7syl 17 . . . . . . . . . 10 (𝜑𝐹 ∈ TopSp)
9 eqid 2610 . . . . . . . . . . 11 (Base‘𝐹) = (Base‘𝐹)
10 cnmpt1vsca.k . . . . . . . . . . 11 𝐾 = (TopOpen‘𝐹)
119, 10istps 20551 . . . . . . . . . 10 (𝐹 ∈ TopSp ↔ 𝐾 ∈ (TopOn‘(Base‘𝐹)))
128, 11sylib 207 . . . . . . . . 9 (𝜑𝐾 ∈ (TopOn‘(Base‘𝐹)))
13 cnmpt2vsca.a . . . . . . . . 9 (𝜑 → (𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐿 ×t 𝑀) Cn 𝐾))
14 cnf2 20863 . . . . . . . . 9 (((𝐿 ×t 𝑀) ∈ (TopOn‘(𝑋 × 𝑌)) ∧ 𝐾 ∈ (TopOn‘(Base‘𝐹)) ∧ (𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐿 ×t 𝑀) Cn 𝐾)) → (𝑥𝑋, 𝑦𝑌𝐴):(𝑋 × 𝑌)⟶(Base‘𝐹))
154, 12, 13, 14syl3anc 1318 . . . . . . . 8 (𝜑 → (𝑥𝑋, 𝑦𝑌𝐴):(𝑋 × 𝑌)⟶(Base‘𝐹))
16 eqid 2610 . . . . . . . . 9 (𝑥𝑋, 𝑦𝑌𝐴) = (𝑥𝑋, 𝑦𝑌𝐴)
1716fmpt2 7126 . . . . . . . 8 (∀𝑥𝑋𝑦𝑌 𝐴 ∈ (Base‘𝐹) ↔ (𝑥𝑋, 𝑦𝑌𝐴):(𝑋 × 𝑌)⟶(Base‘𝐹))
1815, 17sylibr 223 . . . . . . 7 (𝜑 → ∀𝑥𝑋𝑦𝑌 𝐴 ∈ (Base‘𝐹))
1918r19.21bi 2916 . . . . . 6 ((𝜑𝑥𝑋) → ∀𝑦𝑌 𝐴 ∈ (Base‘𝐹))
2019r19.21bi 2916 . . . . 5 (((𝜑𝑥𝑋) ∧ 𝑦𝑌) → 𝐴 ∈ (Base‘𝐹))
21 tlmtps 21801 . . . . . . . . . . 11 (𝑊 ∈ TopMod → 𝑊 ∈ TopSp)
225, 21syl 17 . . . . . . . . . 10 (𝜑𝑊 ∈ TopSp)
23 eqid 2610 . . . . . . . . . . 11 (Base‘𝑊) = (Base‘𝑊)
24 cnmpt1vsca.j . . . . . . . . . . 11 𝐽 = (TopOpen‘𝑊)
2523, 24istps 20551 . . . . . . . . . 10 (𝑊 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘(Base‘𝑊)))
2622, 25sylib 207 . . . . . . . . 9 (𝜑𝐽 ∈ (TopOn‘(Base‘𝑊)))
27 cnmpt2vsca.b . . . . . . . . 9 (𝜑 → (𝑥𝑋, 𝑦𝑌𝐵) ∈ ((𝐿 ×t 𝑀) Cn 𝐽))
28 cnf2 20863 . . . . . . . . 9 (((𝐿 ×t 𝑀) ∈ (TopOn‘(𝑋 × 𝑌)) ∧ 𝐽 ∈ (TopOn‘(Base‘𝑊)) ∧ (𝑥𝑋, 𝑦𝑌𝐵) ∈ ((𝐿 ×t 𝑀) Cn 𝐽)) → (𝑥𝑋, 𝑦𝑌𝐵):(𝑋 × 𝑌)⟶(Base‘𝑊))
294, 26, 27, 28syl3anc 1318 . . . . . . . 8 (𝜑 → (𝑥𝑋, 𝑦𝑌𝐵):(𝑋 × 𝑌)⟶(Base‘𝑊))
30 eqid 2610 . . . . . . . . 9 (𝑥𝑋, 𝑦𝑌𝐵) = (𝑥𝑋, 𝑦𝑌𝐵)
3130fmpt2 7126 . . . . . . . 8 (∀𝑥𝑋𝑦𝑌 𝐵 ∈ (Base‘𝑊) ↔ (𝑥𝑋, 𝑦𝑌𝐵):(𝑋 × 𝑌)⟶(Base‘𝑊))
3229, 31sylibr 223 . . . . . . 7 (𝜑 → ∀𝑥𝑋𝑦𝑌 𝐵 ∈ (Base‘𝑊))
3332r19.21bi 2916 . . . . . 6 ((𝜑𝑥𝑋) → ∀𝑦𝑌 𝐵 ∈ (Base‘𝑊))
3433r19.21bi 2916 . . . . 5 (((𝜑𝑥𝑋) ∧ 𝑦𝑌) → 𝐵 ∈ (Base‘𝑊))
35 eqid 2610 . . . . . 6 ( ·sf𝑊) = ( ·sf𝑊)
36 cnmpt1vsca.t . . . . . 6 · = ( ·𝑠𝑊)
3723, 6, 9, 35, 36scafval 18705 . . . . 5 ((𝐴 ∈ (Base‘𝐹) ∧ 𝐵 ∈ (Base‘𝑊)) → (𝐴( ·sf𝑊)𝐵) = (𝐴 · 𝐵))
3820, 34, 37syl2anc 691 . . . 4 (((𝜑𝑥𝑋) ∧ 𝑦𝑌) → (𝐴( ·sf𝑊)𝐵) = (𝐴 · 𝐵))
39383impa 1251 . . 3 ((𝜑𝑥𝑋𝑦𝑌) → (𝐴( ·sf𝑊)𝐵) = (𝐴 · 𝐵))
4039mpt2eq3dva 6617 . 2 (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ (𝐴( ·sf𝑊)𝐵)) = (𝑥𝑋, 𝑦𝑌 ↦ (𝐴 · 𝐵)))
4135, 24, 6, 10vscacn 21799 . . . 4 (𝑊 ∈ TopMod → ( ·sf𝑊) ∈ ((𝐾 ×t 𝐽) Cn 𝐽))
425, 41syl 17 . . 3 (𝜑 → ( ·sf𝑊) ∈ ((𝐾 ×t 𝐽) Cn 𝐽))
431, 2, 13, 27, 42cnmpt22f 21288 . 2 (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ (𝐴( ·sf𝑊)𝐵)) ∈ ((𝐿 ×t 𝑀) Cn 𝐽))
4440, 43eqeltrrd 2689 1 (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ (𝐴 · 𝐵)) ∈ ((𝐿 ×t 𝑀) Cn 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wral 2896   × cxp 5036  wf 5800  cfv 5804  (class class class)co 6549  cmpt2 6551  Basecbs 15695  Scalarcsca 15771   ·𝑠 cvsca 15772  TopOpenctopn 15905   ·sf cscaf 18687  TopOnctopon 20518  TopSpctps 20519   Cn ccn 20838   ×t ctx 21173  TopModctlm 21771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-map 7746  df-slot 15699  df-base 15700  df-topgen 15927  df-scaf 18689  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cn 20841  df-tx 21175  df-tmd 21686  df-tgp 21687  df-trg 21773  df-tlm 21775
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator