Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qndenserrnopnlem Structured version   Visualization version   GIF version

Theorem qndenserrnopnlem 39193
 Description: n-dimensional rational numbers are dense in the space of n-dimensional real numbers, with respect to the n-dimensional standard topology. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
qndenserrnopnlem.i (𝜑𝐼 ∈ Fin)
qndenserrnopnlem.j 𝐽 = (TopOpen‘(ℝ^‘𝐼))
qndenserrnopnlem.v (𝜑𝑉𝐽)
qndenserrnopnlem.x (𝜑𝑋𝑉)
qndenserrnopnlem.d 𝐷 = (dist‘(ℝ^‘𝐼))
Assertion
Ref Expression
qndenserrnopnlem (𝜑 → ∃𝑦 ∈ (ℚ ↑𝑚 𝐼)𝑦𝑉)
Distinct variable groups:   𝑦,𝐷   𝑦,𝐼   𝑦,𝑉   𝑦,𝑋   𝜑,𝑦
Allowed substitution hint:   𝐽(𝑦)

Proof of Theorem qndenserrnopnlem
Dummy variables 𝑒 𝑓 𝑔 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qndenserrnopnlem.i . . . . 5 (𝜑𝐼 ∈ Fin)
2 qndenserrnopnlem.d . . . . . 6 𝐷 = (dist‘(ℝ^‘𝐼))
32rrxmetfi 39183 . . . . 5 (𝐼 ∈ Fin → 𝐷 ∈ (Met‘(ℝ ↑𝑚 𝐼)))
41, 3syl 17 . . . 4 (𝜑𝐷 ∈ (Met‘(ℝ ↑𝑚 𝐼)))
5 metxmet 21949 . . . 4 (𝐷 ∈ (Met‘(ℝ ↑𝑚 𝐼)) → 𝐷 ∈ (∞Met‘(ℝ ↑𝑚 𝐼)))
64, 5syl 17 . . 3 (𝜑𝐷 ∈ (∞Met‘(ℝ ↑𝑚 𝐼)))
7 qndenserrnopnlem.v . . . . 5 (𝜑𝑉𝐽)
8 qndenserrnopnlem.j . . . . 5 𝐽 = (TopOpen‘(ℝ^‘𝐼))
97, 8syl6eleq 2698 . . . 4 (𝜑𝑉 ∈ (TopOpen‘(ℝ^‘𝐼)))
101rrxtopnfi 39182 . . . . 5 (𝜑 → (TopOpen‘(ℝ^‘𝐼)) = (MetOpen‘(𝑓 ∈ (ℝ ↑𝑚 𝐼), 𝑔 ∈ (ℝ ↑𝑚 𝐼) ↦ (√‘Σ𝑘𝐼 (((𝑓𝑘) − (𝑔𝑘))↑2)))))
112a1i 11 . . . . . . 7 (𝜑𝐷 = (dist‘(ℝ^‘𝐼)))
12 eqid 2610 . . . . . . . . 9 (ℝ^‘𝐼) = (ℝ^‘𝐼)
13 eqid 2610 . . . . . . . . 9 (ℝ ↑𝑚 𝐼) = (ℝ ↑𝑚 𝐼)
1412, 13rrxdsfi 39181 . . . . . . . 8 (𝐼 ∈ Fin → (dist‘(ℝ^‘𝐼)) = (𝑓 ∈ (ℝ ↑𝑚 𝐼), 𝑔 ∈ (ℝ ↑𝑚 𝐼) ↦ (√‘Σ𝑘𝐼 (((𝑓𝑘) − (𝑔𝑘))↑2))))
151, 14syl 17 . . . . . . 7 (𝜑 → (dist‘(ℝ^‘𝐼)) = (𝑓 ∈ (ℝ ↑𝑚 𝐼), 𝑔 ∈ (ℝ ↑𝑚 𝐼) ↦ (√‘Σ𝑘𝐼 (((𝑓𝑘) − (𝑔𝑘))↑2))))
1611, 15eqtr2d 2645 . . . . . 6 (𝜑 → (𝑓 ∈ (ℝ ↑𝑚 𝐼), 𝑔 ∈ (ℝ ↑𝑚 𝐼) ↦ (√‘Σ𝑘𝐼 (((𝑓𝑘) − (𝑔𝑘))↑2))) = 𝐷)
1716fveq2d 6107 . . . . 5 (𝜑 → (MetOpen‘(𝑓 ∈ (ℝ ↑𝑚 𝐼), 𝑔 ∈ (ℝ ↑𝑚 𝐼) ↦ (√‘Σ𝑘𝐼 (((𝑓𝑘) − (𝑔𝑘))↑2)))) = (MetOpen‘𝐷))
1810, 17eqtrd 2644 . . . 4 (𝜑 → (TopOpen‘(ℝ^‘𝐼)) = (MetOpen‘𝐷))
199, 18eleqtrd 2690 . . 3 (𝜑𝑉 ∈ (MetOpen‘𝐷))
20 qndenserrnopnlem.x . . 3 (𝜑𝑋𝑉)
21 eqid 2610 . . . 4 (MetOpen‘𝐷) = (MetOpen‘𝐷)
2221mopni2 22108 . . 3 ((𝐷 ∈ (∞Met‘(ℝ ↑𝑚 𝐼)) ∧ 𝑉 ∈ (MetOpen‘𝐷) ∧ 𝑋𝑉) → ∃𝑒 ∈ ℝ+ (𝑋(ball‘𝐷)𝑒) ⊆ 𝑉)
236, 19, 20, 22syl3anc 1318 . 2 (𝜑 → ∃𝑒 ∈ ℝ+ (𝑋(ball‘𝐷)𝑒) ⊆ 𝑉)
2413ad2ant1 1075 . . . . . 6 ((𝜑𝑒 ∈ ℝ+ ∧ (𝑋(ball‘𝐷)𝑒) ⊆ 𝑉) → 𝐼 ∈ Fin)
25 rrxtps 39180 . . . . . . . . . . . 12 (𝐼 ∈ Fin → (ℝ^‘𝐼) ∈ TopSp)
261, 25syl 17 . . . . . . . . . . 11 (𝜑 → (ℝ^‘𝐼) ∈ TopSp)
27 eqid 2610 . . . . . . . . . . . 12 (Base‘(ℝ^‘𝐼)) = (Base‘(ℝ^‘𝐼))
2827, 8istps 20551 . . . . . . . . . . 11 ((ℝ^‘𝐼) ∈ TopSp ↔ 𝐽 ∈ (TopOn‘(Base‘(ℝ^‘𝐼))))
2926, 28sylib 207 . . . . . . . . . 10 (𝜑𝐽 ∈ (TopOn‘(Base‘(ℝ^‘𝐼))))
301, 12, 27rrxbasefi 39179 . . . . . . . . . . 11 (𝜑 → (Base‘(ℝ^‘𝐼)) = (ℝ ↑𝑚 𝐼))
3130fveq2d 6107 . . . . . . . . . 10 (𝜑 → (TopOn‘(Base‘(ℝ^‘𝐼))) = (TopOn‘(ℝ ↑𝑚 𝐼)))
3229, 31eleqtrd 2690 . . . . . . . . 9 (𝜑𝐽 ∈ (TopOn‘(ℝ ↑𝑚 𝐼)))
33 toponss 20544 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘(ℝ ↑𝑚 𝐼)) ∧ 𝑉𝐽) → 𝑉 ⊆ (ℝ ↑𝑚 𝐼))
3432, 7, 33syl2anc 691 . . . . . . . 8 (𝜑𝑉 ⊆ (ℝ ↑𝑚 𝐼))
3534, 20sseldd 3569 . . . . . . 7 (𝜑𝑋 ∈ (ℝ ↑𝑚 𝐼))
36353ad2ant1 1075 . . . . . 6 ((𝜑𝑒 ∈ ℝ+ ∧ (𝑋(ball‘𝐷)𝑒) ⊆ 𝑉) → 𝑋 ∈ (ℝ ↑𝑚 𝐼))
37 simp2 1055 . . . . . 6 ((𝜑𝑒 ∈ ℝ+ ∧ (𝑋(ball‘𝐷)𝑒) ⊆ 𝑉) → 𝑒 ∈ ℝ+)
3824, 36, 2, 37qndenserrnbl 39191 . . . . 5 ((𝜑𝑒 ∈ ℝ+ ∧ (𝑋(ball‘𝐷)𝑒) ⊆ 𝑉) → ∃𝑦 ∈ (ℚ ↑𝑚 𝐼)𝑦 ∈ (𝑋(ball‘𝐷)𝑒))
39 ssel 3562 . . . . . . . 8 ((𝑋(ball‘𝐷)𝑒) ⊆ 𝑉 → (𝑦 ∈ (𝑋(ball‘𝐷)𝑒) → 𝑦𝑉))
4039adantr 480 . . . . . . 7 (((𝑋(ball‘𝐷)𝑒) ⊆ 𝑉𝑦 ∈ (ℚ ↑𝑚 𝐼)) → (𝑦 ∈ (𝑋(ball‘𝐷)𝑒) → 𝑦𝑉))
41403ad2antl3 1218 . . . . . 6 (((𝜑𝑒 ∈ ℝ+ ∧ (𝑋(ball‘𝐷)𝑒) ⊆ 𝑉) ∧ 𝑦 ∈ (ℚ ↑𝑚 𝐼)) → (𝑦 ∈ (𝑋(ball‘𝐷)𝑒) → 𝑦𝑉))
4241reximdva 3000 . . . . 5 ((𝜑𝑒 ∈ ℝ+ ∧ (𝑋(ball‘𝐷)𝑒) ⊆ 𝑉) → (∃𝑦 ∈ (ℚ ↑𝑚 𝐼)𝑦 ∈ (𝑋(ball‘𝐷)𝑒) → ∃𝑦 ∈ (ℚ ↑𝑚 𝐼)𝑦𝑉))
4338, 42mpd 15 . . . 4 ((𝜑𝑒 ∈ ℝ+ ∧ (𝑋(ball‘𝐷)𝑒) ⊆ 𝑉) → ∃𝑦 ∈ (ℚ ↑𝑚 𝐼)𝑦𝑉)
44433exp 1256 . . 3 (𝜑 → (𝑒 ∈ ℝ+ → ((𝑋(ball‘𝐷)𝑒) ⊆ 𝑉 → ∃𝑦 ∈ (ℚ ↑𝑚 𝐼)𝑦𝑉)))
4544rexlimdv 3012 . 2 (𝜑 → (∃𝑒 ∈ ℝ+ (𝑋(ball‘𝐷)𝑒) ⊆ 𝑉 → ∃𝑦 ∈ (ℚ ↑𝑚 𝐼)𝑦𝑉))
4623, 45mpd 15 1 (𝜑 → ∃𝑦 ∈ (ℚ ↑𝑚 𝐼)𝑦𝑉)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  ∃wrex 2897   ⊆ wss 3540  ‘cfv 5804  (class class class)co 6549   ↦ cmpt2 6551   ↑𝑚 cmap 7744  Fincfn 7841  ℝcr 9814   − cmin 10145  2c2 10947  ℚcq 11664  ℝ+crp 11708  ↑cexp 12722  √csqrt 13821  Σcsu 14264  Basecbs 15695  distcds 15777  TopOpenctopn 15905  ∞Metcxmt 19552  Metcme 19553  ballcbl 19554  MetOpencmopn 19557  TopOnctopon 20518  TopSpctps 20519  ℝ^crrx 22979 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-tpos 7239  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ico 12052  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-prds 15931  df-pws 15933  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158  df-submnd 17159  df-grp 17248  df-minusg 17249  df-sbg 17250  df-subg 17414  df-ghm 17481  df-cntz 17573  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-cring 18373  df-oppr 18446  df-dvdsr 18464  df-unit 18465  df-invr 18495  df-dvr 18506  df-rnghom 18538  df-drng 18572  df-field 18573  df-subrg 18601  df-abv 18640  df-staf 18668  df-srng 18669  df-lmod 18688  df-lss 18754  df-lmhm 18843  df-lvec 18924  df-sra 18993  df-rgmod 18994  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-cnfld 19568  df-refld 19770  df-phl 19790  df-dsmm 19895  df-frlm 19910  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-xms 21935  df-ms 21936  df-nm 22197  df-ngp 22198  df-tng 22199  df-nrg 22200  df-nlm 22201  df-clm 22671  df-cph 22776  df-tch 22777  df-rrx 22981 This theorem is referenced by:  qndenserrnopn  39194
 Copyright terms: Public domain W3C validator