MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ucncn Structured version   Visualization version   GIF version

Theorem ucncn 21899
Description: Uniform continuity implies continuity. Deduction form. Proposition 1 of [BourbakiTop1] p. II.6. (Contributed by Thierry Arnoux, 30-Nov-2017.)
Hypotheses
Ref Expression
ucncn.j 𝐽 = (TopOpen‘𝑅)
ucncn.k 𝐾 = (TopOpen‘𝑆)
ucncn.1 (𝜑𝑅 ∈ UnifSp)
ucncn.2 (𝜑𝑆 ∈ UnifSp)
ucncn.3 (𝜑𝑅 ∈ TopSp)
ucncn.4 (𝜑𝑆 ∈ TopSp)
ucncn.5 (𝜑𝐹 ∈ ((UnifSt‘𝑅) Cnu(UnifSt‘𝑆)))
Assertion
Ref Expression
ucncn (𝜑𝐹 ∈ (𝐽 Cn 𝐾))

Proof of Theorem ucncn
Dummy variables 𝑟 𝑎 𝑠 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ucncn.5 . . . 4 (𝜑𝐹 ∈ ((UnifSt‘𝑅) Cnu(UnifSt‘𝑆)))
2 ucncn.1 . . . . . 6 (𝜑𝑅 ∈ UnifSp)
3 eqid 2610 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
4 eqid 2610 . . . . . . . 8 (UnifSt‘𝑅) = (UnifSt‘𝑅)
5 ucncn.j . . . . . . . 8 𝐽 = (TopOpen‘𝑅)
63, 4, 5isusp 21875 . . . . . . 7 (𝑅 ∈ UnifSp ↔ ((UnifSt‘𝑅) ∈ (UnifOn‘(Base‘𝑅)) ∧ 𝐽 = (unifTop‘(UnifSt‘𝑅))))
76simplbi 475 . . . . . 6 (𝑅 ∈ UnifSp → (UnifSt‘𝑅) ∈ (UnifOn‘(Base‘𝑅)))
82, 7syl 17 . . . . 5 (𝜑 → (UnifSt‘𝑅) ∈ (UnifOn‘(Base‘𝑅)))
9 ucncn.2 . . . . . 6 (𝜑𝑆 ∈ UnifSp)
10 eqid 2610 . . . . . . . 8 (Base‘𝑆) = (Base‘𝑆)
11 eqid 2610 . . . . . . . 8 (UnifSt‘𝑆) = (UnifSt‘𝑆)
12 ucncn.k . . . . . . . 8 𝐾 = (TopOpen‘𝑆)
1310, 11, 12isusp 21875 . . . . . . 7 (𝑆 ∈ UnifSp ↔ ((UnifSt‘𝑆) ∈ (UnifOn‘(Base‘𝑆)) ∧ 𝐾 = (unifTop‘(UnifSt‘𝑆))))
1413simplbi 475 . . . . . 6 (𝑆 ∈ UnifSp → (UnifSt‘𝑆) ∈ (UnifOn‘(Base‘𝑆)))
159, 14syl 17 . . . . 5 (𝜑 → (UnifSt‘𝑆) ∈ (UnifOn‘(Base‘𝑆)))
16 isucn 21892 . . . . 5 (((UnifSt‘𝑅) ∈ (UnifOn‘(Base‘𝑅)) ∧ (UnifSt‘𝑆) ∈ (UnifOn‘(Base‘𝑆))) → (𝐹 ∈ ((UnifSt‘𝑅) Cnu(UnifSt‘𝑆)) ↔ (𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ ∀𝑠 ∈ (UnifSt‘𝑆)∃𝑟 ∈ (UnifSt‘𝑅)∀𝑥 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧)))))
178, 15, 16syl2anc 691 . . . 4 (𝜑 → (𝐹 ∈ ((UnifSt‘𝑅) Cnu(UnifSt‘𝑆)) ↔ (𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ ∀𝑠 ∈ (UnifSt‘𝑆)∃𝑟 ∈ (UnifSt‘𝑅)∀𝑥 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧)))))
181, 17mpbid 221 . . 3 (𝜑 → (𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ ∀𝑠 ∈ (UnifSt‘𝑆)∃𝑟 ∈ (UnifSt‘𝑅)∀𝑥 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧))))
1918simpld 474 . 2 (𝜑𝐹:(Base‘𝑅)⟶(Base‘𝑆))
20 cnvimass 5404 . . . . 5 (𝐹𝑎) ⊆ dom 𝐹
21 fdm 5964 . . . . . . 7 (𝐹:(Base‘𝑅)⟶(Base‘𝑆) → dom 𝐹 = (Base‘𝑅))
2219, 21syl 17 . . . . . 6 (𝜑 → dom 𝐹 = (Base‘𝑅))
2322adantr 480 . . . . 5 ((𝜑𝑎𝐾) → dom 𝐹 = (Base‘𝑅))
2420, 23syl5sseq 3616 . . . 4 ((𝜑𝑎𝐾) → (𝐹𝑎) ⊆ (Base‘𝑅))
25 simplll 794 . . . . . . . . 9 ((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) → 𝜑)
26 simpr 476 . . . . . . . . 9 ((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) → 𝑠 ∈ (UnifSt‘𝑆))
2724ad2antrr 758 . . . . . . . . . 10 ((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) → (𝐹𝑎) ⊆ (Base‘𝑅))
28 simplr 788 . . . . . . . . . 10 ((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) → 𝑥 ∈ (𝐹𝑎))
2927, 28sseldd 3569 . . . . . . . . 9 ((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) → 𝑥 ∈ (Base‘𝑅))
3018simprd 478 . . . . . . . . . . . 12 (𝜑 → ∀𝑠 ∈ (UnifSt‘𝑆)∃𝑟 ∈ (UnifSt‘𝑅)∀𝑥 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧)))
3130r19.21bi 2916 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (UnifSt‘𝑆)) → ∃𝑟 ∈ (UnifSt‘𝑅)∀𝑥 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧)))
32 r19.12 3045 . . . . . . . . . . 11 (∃𝑟 ∈ (UnifSt‘𝑅)∀𝑥 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧)) → ∀𝑥 ∈ (Base‘𝑅)∃𝑟 ∈ (UnifSt‘𝑅)∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧)))
3331, 32syl 17 . . . . . . . . . 10 ((𝜑𝑠 ∈ (UnifSt‘𝑆)) → ∀𝑥 ∈ (Base‘𝑅)∃𝑟 ∈ (UnifSt‘𝑅)∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧)))
3433r19.21bi 2916 . . . . . . . . 9 (((𝜑𝑠 ∈ (UnifSt‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) → ∃𝑟 ∈ (UnifSt‘𝑅)∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧)))
3525, 26, 29, 34syl21anc 1317 . . . . . . . 8 ((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) → ∃𝑟 ∈ (UnifSt‘𝑅)∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧)))
3635adantr 480 . . . . . . 7 (((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) → ∃𝑟 ∈ (UnifSt‘𝑅)∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧)))
3725ad3antrrr 762 . . . . . . . . . 10 (((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) ∧ ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧))) → 𝜑)
388ad5antr 766 . . . . . . . . . . . 12 ((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) → (UnifSt‘𝑅) ∈ (UnifOn‘(Base‘𝑅)))
39 simpr 476 . . . . . . . . . . . 12 ((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) → 𝑟 ∈ (UnifSt‘𝑅))
40 ustrel 21825 . . . . . . . . . . . 12 (((UnifSt‘𝑅) ∈ (UnifOn‘(Base‘𝑅)) ∧ 𝑟 ∈ (UnifSt‘𝑅)) → Rel 𝑟)
4138, 39, 40syl2anc 691 . . . . . . . . . . 11 ((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) → Rel 𝑟)
4241adantr 480 . . . . . . . . . 10 (((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) ∧ ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧))) → Rel 𝑟)
4337, 8syl 17 . . . . . . . . . . 11 (((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) ∧ ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧))) → (UnifSt‘𝑅) ∈ (UnifOn‘(Base‘𝑅)))
44 simplr 788 . . . . . . . . . . 11 (((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) ∧ ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧))) → 𝑟 ∈ (UnifSt‘𝑅))
4529ad3antrrr 762 . . . . . . . . . . 11 (((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) ∧ ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧))) → 𝑥 ∈ (Base‘𝑅))
46 ustimasn 21842 . . . . . . . . . . 11 (((UnifSt‘𝑅) ∈ (UnifOn‘(Base‘𝑅)) ∧ 𝑟 ∈ (UnifSt‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑟 “ {𝑥}) ⊆ (Base‘𝑅))
4743, 44, 45, 46syl3anc 1318 . . . . . . . . . 10 (((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) ∧ ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧))) → (𝑟 “ {𝑥}) ⊆ (Base‘𝑅))
48 simpr 476 . . . . . . . . . . 11 (((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) ∧ ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧))) → ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧)))
49 simplr 788 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝐹𝑥)𝑠(𝐹𝑧)) → 𝑧 ∈ (Base‘𝑅))
50 simpllr 795 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) ∧ (𝐹𝑥)𝑠(𝐹𝑧)) → (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎)
5115ad5antr 766 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) → (UnifSt‘𝑆) ∈ (UnifOn‘(Base‘𝑆)))
52 simpllr 795 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) → 𝑠 ∈ (UnifSt‘𝑆))
53 ustrel 21825 . . . . . . . . . . . . . . . . . . . 20 (((UnifSt‘𝑆) ∈ (UnifOn‘(Base‘𝑆)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) → Rel 𝑠)
5451, 52, 53syl2anc 691 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) → Rel 𝑠)
55 elrelimasn 5408 . . . . . . . . . . . . . . . . . . 19 (Rel 𝑠 → ((𝐹𝑧) ∈ (𝑠 “ {(𝐹𝑥)}) ↔ (𝐹𝑥)𝑠(𝐹𝑧)))
5654, 55syl 17 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) → ((𝐹𝑧) ∈ (𝑠 “ {(𝐹𝑥)}) ↔ (𝐹𝑥)𝑠(𝐹𝑧)))
5756biimpar 501 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) ∧ (𝐹𝑥)𝑠(𝐹𝑧)) → (𝐹𝑧) ∈ (𝑠 “ {(𝐹𝑥)}))
5850, 57sseldd 3569 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) ∧ (𝐹𝑥)𝑠(𝐹𝑧)) → (𝐹𝑧) ∈ 𝑎)
5958adantlr 747 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝐹𝑥)𝑠(𝐹𝑧)) → (𝐹𝑧) ∈ 𝑎)
60 ffn 5958 . . . . . . . . . . . . . . . . 17 (𝐹:(Base‘𝑅)⟶(Base‘𝑆) → 𝐹 Fn (Base‘𝑅))
61 elpreima 6245 . . . . . . . . . . . . . . . . 17 (𝐹 Fn (Base‘𝑅) → (𝑧 ∈ (𝐹𝑎) ↔ (𝑧 ∈ (Base‘𝑅) ∧ (𝐹𝑧) ∈ 𝑎)))
6219, 60, 613syl 18 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑧 ∈ (𝐹𝑎) ↔ (𝑧 ∈ (Base‘𝑅) ∧ (𝐹𝑧) ∈ 𝑎)))
6362ad7antr 770 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝐹𝑥)𝑠(𝐹𝑧)) → (𝑧 ∈ (𝐹𝑎) ↔ (𝑧 ∈ (Base‘𝑅) ∧ (𝐹𝑧) ∈ 𝑎)))
6449, 59, 63mpbir2and 959 . . . . . . . . . . . . . 14 ((((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝐹𝑥)𝑠(𝐹𝑧)) → 𝑧 ∈ (𝐹𝑎))
6564ex 449 . . . . . . . . . . . . 13 (((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) ∧ 𝑧 ∈ (Base‘𝑅)) → ((𝐹𝑥)𝑠(𝐹𝑧) → 𝑧 ∈ (𝐹𝑎)))
6665ralrimiva 2949 . . . . . . . . . . . 12 ((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) → ∀𝑧 ∈ (Base‘𝑅)((𝐹𝑥)𝑠(𝐹𝑧) → 𝑧 ∈ (𝐹𝑎)))
6766adantr 480 . . . . . . . . . . 11 (((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) ∧ ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧))) → ∀𝑧 ∈ (Base‘𝑅)((𝐹𝑥)𝑠(𝐹𝑧) → 𝑧 ∈ (𝐹𝑎)))
68 r19.26 3046 . . . . . . . . . . . 12 (∀𝑧 ∈ (Base‘𝑅)((𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧)) ∧ ((𝐹𝑥)𝑠(𝐹𝑧) → 𝑧 ∈ (𝐹𝑎))) ↔ (∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧)) ∧ ∀𝑧 ∈ (Base‘𝑅)((𝐹𝑥)𝑠(𝐹𝑧) → 𝑧 ∈ (𝐹𝑎))))
69 pm3.33 607 . . . . . . . . . . . . 13 (((𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧)) ∧ ((𝐹𝑥)𝑠(𝐹𝑧) → 𝑧 ∈ (𝐹𝑎))) → (𝑥𝑟𝑧𝑧 ∈ (𝐹𝑎)))
7069ralimi 2936 . . . . . . . . . . . 12 (∀𝑧 ∈ (Base‘𝑅)((𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧)) ∧ ((𝐹𝑥)𝑠(𝐹𝑧) → 𝑧 ∈ (𝐹𝑎))) → ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧𝑧 ∈ (𝐹𝑎)))
7168, 70sylbir 224 . . . . . . . . . . 11 ((∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧)) ∧ ∀𝑧 ∈ (Base‘𝑅)((𝐹𝑥)𝑠(𝐹𝑧) → 𝑧 ∈ (𝐹𝑎))) → ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧𝑧 ∈ (𝐹𝑎)))
7248, 67, 71syl2anc 691 . . . . . . . . . 10 (((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) ∧ ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧))) → ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧𝑧 ∈ (𝐹𝑎)))
73 simpl2l 1107 . . . . . . . . . . . . . 14 (((𝜑 ∧ (Rel 𝑟 ∧ (𝑟 “ {𝑥}) ⊆ (Base‘𝑅)) ∧ ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧𝑧 ∈ (𝐹𝑎))) ∧ 𝑦 ∈ (𝑟 “ {𝑥})) → Rel 𝑟)
74 simpr 476 . . . . . . . . . . . . . 14 (((𝜑 ∧ (Rel 𝑟 ∧ (𝑟 “ {𝑥}) ⊆ (Base‘𝑅)) ∧ ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧𝑧 ∈ (𝐹𝑎))) ∧ 𝑦 ∈ (𝑟 “ {𝑥})) → 𝑦 ∈ (𝑟 “ {𝑥}))
75 elrelimasn 5408 . . . . . . . . . . . . . . 15 (Rel 𝑟 → (𝑦 ∈ (𝑟 “ {𝑥}) ↔ 𝑥𝑟𝑦))
7675biimpa 500 . . . . . . . . . . . . . 14 ((Rel 𝑟𝑦 ∈ (𝑟 “ {𝑥})) → 𝑥𝑟𝑦)
7773, 74, 76syl2anc 691 . . . . . . . . . . . . 13 (((𝜑 ∧ (Rel 𝑟 ∧ (𝑟 “ {𝑥}) ⊆ (Base‘𝑅)) ∧ ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧𝑧 ∈ (𝐹𝑎))) ∧ 𝑦 ∈ (𝑟 “ {𝑥})) → 𝑥𝑟𝑦)
78 simpl2r 1108 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (Rel 𝑟 ∧ (𝑟 “ {𝑥}) ⊆ (Base‘𝑅)) ∧ ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧𝑧 ∈ (𝐹𝑎))) ∧ 𝑦 ∈ (𝑟 “ {𝑥})) → (𝑟 “ {𝑥}) ⊆ (Base‘𝑅))
7978, 74sseldd 3569 . . . . . . . . . . . . . 14 (((𝜑 ∧ (Rel 𝑟 ∧ (𝑟 “ {𝑥}) ⊆ (Base‘𝑅)) ∧ ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧𝑧 ∈ (𝐹𝑎))) ∧ 𝑦 ∈ (𝑟 “ {𝑥})) → 𝑦 ∈ (Base‘𝑅))
80 simpl3 1059 . . . . . . . . . . . . . 14 (((𝜑 ∧ (Rel 𝑟 ∧ (𝑟 “ {𝑥}) ⊆ (Base‘𝑅)) ∧ ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧𝑧 ∈ (𝐹𝑎))) ∧ 𝑦 ∈ (𝑟 “ {𝑥})) → ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧𝑧 ∈ (𝐹𝑎)))
81 breq2 4587 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑦 → (𝑥𝑟𝑧𝑥𝑟𝑦))
82 eleq1 2676 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑦 → (𝑧 ∈ (𝐹𝑎) ↔ 𝑦 ∈ (𝐹𝑎)))
8381, 82imbi12d 333 . . . . . . . . . . . . . . 15 (𝑧 = 𝑦 → ((𝑥𝑟𝑧𝑧 ∈ (𝐹𝑎)) ↔ (𝑥𝑟𝑦𝑦 ∈ (𝐹𝑎))))
8483rspcv 3278 . . . . . . . . . . . . . 14 (𝑦 ∈ (Base‘𝑅) → (∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧𝑧 ∈ (𝐹𝑎)) → (𝑥𝑟𝑦𝑦 ∈ (𝐹𝑎))))
8579, 80, 84sylc 63 . . . . . . . . . . . . 13 (((𝜑 ∧ (Rel 𝑟 ∧ (𝑟 “ {𝑥}) ⊆ (Base‘𝑅)) ∧ ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧𝑧 ∈ (𝐹𝑎))) ∧ 𝑦 ∈ (𝑟 “ {𝑥})) → (𝑥𝑟𝑦𝑦 ∈ (𝐹𝑎)))
8677, 85mpd 15 . . . . . . . . . . . 12 (((𝜑 ∧ (Rel 𝑟 ∧ (𝑟 “ {𝑥}) ⊆ (Base‘𝑅)) ∧ ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧𝑧 ∈ (𝐹𝑎))) ∧ 𝑦 ∈ (𝑟 “ {𝑥})) → 𝑦 ∈ (𝐹𝑎))
8786ex 449 . . . . . . . . . . 11 ((𝜑 ∧ (Rel 𝑟 ∧ (𝑟 “ {𝑥}) ⊆ (Base‘𝑅)) ∧ ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧𝑧 ∈ (𝐹𝑎))) → (𝑦 ∈ (𝑟 “ {𝑥}) → 𝑦 ∈ (𝐹𝑎)))
8887ssrdv 3574 . . . . . . . . . 10 ((𝜑 ∧ (Rel 𝑟 ∧ (𝑟 “ {𝑥}) ⊆ (Base‘𝑅)) ∧ ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧𝑧 ∈ (𝐹𝑎))) → (𝑟 “ {𝑥}) ⊆ (𝐹𝑎))
8937, 42, 47, 72, 88syl121anc 1323 . . . . . . . . 9 (((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) ∧ ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧))) → (𝑟 “ {𝑥}) ⊆ (𝐹𝑎))
9089ex 449 . . . . . . . 8 ((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) → (∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧)) → (𝑟 “ {𝑥}) ⊆ (𝐹𝑎)))
9190reximdva 3000 . . . . . . 7 (((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) → (∃𝑟 ∈ (UnifSt‘𝑅)∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧)) → ∃𝑟 ∈ (UnifSt‘𝑅)(𝑟 “ {𝑥}) ⊆ (𝐹𝑎)))
9236, 91mpd 15 . . . . . 6 (((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) → ∃𝑟 ∈ (UnifSt‘𝑅)(𝑟 “ {𝑥}) ⊆ (𝐹𝑎))
93 elpreima 6245 . . . . . . . . . . 11 (𝐹 Fn (Base‘𝑅) → (𝑥 ∈ (𝐹𝑎) ↔ (𝑥 ∈ (Base‘𝑅) ∧ (𝐹𝑥) ∈ 𝑎)))
9419, 60, 933syl 18 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (𝐹𝑎) ↔ (𝑥 ∈ (Base‘𝑅) ∧ (𝐹𝑥) ∈ 𝑎)))
9594adantr 480 . . . . . . . . 9 ((𝜑𝑎𝐾) → (𝑥 ∈ (𝐹𝑎) ↔ (𝑥 ∈ (Base‘𝑅) ∧ (𝐹𝑥) ∈ 𝑎)))
9695biimpa 500 . . . . . . . 8 (((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) → (𝑥 ∈ (Base‘𝑅) ∧ (𝐹𝑥) ∈ 𝑎))
9796simprd 478 . . . . . . 7 (((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) → (𝐹𝑥) ∈ 𝑎)
98 simpr 476 . . . . . . . . . . 11 ((𝜑𝑎𝐾) → 𝑎𝐾)
9913simprbi 479 . . . . . . . . . . . . 13 (𝑆 ∈ UnifSp → 𝐾 = (unifTop‘(UnifSt‘𝑆)))
1009, 99syl 17 . . . . . . . . . . . 12 (𝜑𝐾 = (unifTop‘(UnifSt‘𝑆)))
101100adantr 480 . . . . . . . . . . 11 ((𝜑𝑎𝐾) → 𝐾 = (unifTop‘(UnifSt‘𝑆)))
10298, 101eleqtrd 2690 . . . . . . . . . 10 ((𝜑𝑎𝐾) → 𝑎 ∈ (unifTop‘(UnifSt‘𝑆)))
103 elutop 21847 . . . . . . . . . . . 12 ((UnifSt‘𝑆) ∈ (UnifOn‘(Base‘𝑆)) → (𝑎 ∈ (unifTop‘(UnifSt‘𝑆)) ↔ (𝑎 ⊆ (Base‘𝑆) ∧ ∀𝑦𝑎𝑠 ∈ (UnifSt‘𝑆)(𝑠 “ {𝑦}) ⊆ 𝑎)))
10415, 103syl 17 . . . . . . . . . . 11 (𝜑 → (𝑎 ∈ (unifTop‘(UnifSt‘𝑆)) ↔ (𝑎 ⊆ (Base‘𝑆) ∧ ∀𝑦𝑎𝑠 ∈ (UnifSt‘𝑆)(𝑠 “ {𝑦}) ⊆ 𝑎)))
105104adantr 480 . . . . . . . . . 10 ((𝜑𝑎𝐾) → (𝑎 ∈ (unifTop‘(UnifSt‘𝑆)) ↔ (𝑎 ⊆ (Base‘𝑆) ∧ ∀𝑦𝑎𝑠 ∈ (UnifSt‘𝑆)(𝑠 “ {𝑦}) ⊆ 𝑎)))
106102, 105mpbid 221 . . . . . . . . 9 ((𝜑𝑎𝐾) → (𝑎 ⊆ (Base‘𝑆) ∧ ∀𝑦𝑎𝑠 ∈ (UnifSt‘𝑆)(𝑠 “ {𝑦}) ⊆ 𝑎))
107106simprd 478 . . . . . . . 8 ((𝜑𝑎𝐾) → ∀𝑦𝑎𝑠 ∈ (UnifSt‘𝑆)(𝑠 “ {𝑦}) ⊆ 𝑎)
108107adantr 480 . . . . . . 7 (((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) → ∀𝑦𝑎𝑠 ∈ (UnifSt‘𝑆)(𝑠 “ {𝑦}) ⊆ 𝑎)
109 sneq 4135 . . . . . . . . . . 11 (𝑦 = (𝐹𝑥) → {𝑦} = {(𝐹𝑥)})
110109imaeq2d 5385 . . . . . . . . . 10 (𝑦 = (𝐹𝑥) → (𝑠 “ {𝑦}) = (𝑠 “ {(𝐹𝑥)}))
111110sseq1d 3595 . . . . . . . . 9 (𝑦 = (𝐹𝑥) → ((𝑠 “ {𝑦}) ⊆ 𝑎 ↔ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎))
112111rexbidv 3034 . . . . . . . 8 (𝑦 = (𝐹𝑥) → (∃𝑠 ∈ (UnifSt‘𝑆)(𝑠 “ {𝑦}) ⊆ 𝑎 ↔ ∃𝑠 ∈ (UnifSt‘𝑆)(𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎))
113112rspcv 3278 . . . . . . 7 ((𝐹𝑥) ∈ 𝑎 → (∀𝑦𝑎𝑠 ∈ (UnifSt‘𝑆)(𝑠 “ {𝑦}) ⊆ 𝑎 → ∃𝑠 ∈ (UnifSt‘𝑆)(𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎))
11497, 108, 113sylc 63 . . . . . 6 (((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) → ∃𝑠 ∈ (UnifSt‘𝑆)(𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎)
11592, 114r19.29a 3060 . . . . 5 (((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) → ∃𝑟 ∈ (UnifSt‘𝑅)(𝑟 “ {𝑥}) ⊆ (𝐹𝑎))
116115ralrimiva 2949 . . . 4 ((𝜑𝑎𝐾) → ∀𝑥 ∈ (𝐹𝑎)∃𝑟 ∈ (UnifSt‘𝑅)(𝑟 “ {𝑥}) ⊆ (𝐹𝑎))
1176simprbi 479 . . . . . . . 8 (𝑅 ∈ UnifSp → 𝐽 = (unifTop‘(UnifSt‘𝑅)))
1182, 117syl 17 . . . . . . 7 (𝜑𝐽 = (unifTop‘(UnifSt‘𝑅)))
119118adantr 480 . . . . . 6 ((𝜑𝑎𝐾) → 𝐽 = (unifTop‘(UnifSt‘𝑅)))
120119eleq2d 2673 . . . . 5 ((𝜑𝑎𝐾) → ((𝐹𝑎) ∈ 𝐽 ↔ (𝐹𝑎) ∈ (unifTop‘(UnifSt‘𝑅))))
121 elutop 21847 . . . . . . 7 ((UnifSt‘𝑅) ∈ (UnifOn‘(Base‘𝑅)) → ((𝐹𝑎) ∈ (unifTop‘(UnifSt‘𝑅)) ↔ ((𝐹𝑎) ⊆ (Base‘𝑅) ∧ ∀𝑥 ∈ (𝐹𝑎)∃𝑟 ∈ (UnifSt‘𝑅)(𝑟 “ {𝑥}) ⊆ (𝐹𝑎))))
1228, 121syl 17 . . . . . 6 (𝜑 → ((𝐹𝑎) ∈ (unifTop‘(UnifSt‘𝑅)) ↔ ((𝐹𝑎) ⊆ (Base‘𝑅) ∧ ∀𝑥 ∈ (𝐹𝑎)∃𝑟 ∈ (UnifSt‘𝑅)(𝑟 “ {𝑥}) ⊆ (𝐹𝑎))))
123122adantr 480 . . . . 5 ((𝜑𝑎𝐾) → ((𝐹𝑎) ∈ (unifTop‘(UnifSt‘𝑅)) ↔ ((𝐹𝑎) ⊆ (Base‘𝑅) ∧ ∀𝑥 ∈ (𝐹𝑎)∃𝑟 ∈ (UnifSt‘𝑅)(𝑟 “ {𝑥}) ⊆ (𝐹𝑎))))
124120, 123bitrd 267 . . . 4 ((𝜑𝑎𝐾) → ((𝐹𝑎) ∈ 𝐽 ↔ ((𝐹𝑎) ⊆ (Base‘𝑅) ∧ ∀𝑥 ∈ (𝐹𝑎)∃𝑟 ∈ (UnifSt‘𝑅)(𝑟 “ {𝑥}) ⊆ (𝐹𝑎))))
12524, 116, 124mpbir2and 959 . . 3 ((𝜑𝑎𝐾) → (𝐹𝑎) ∈ 𝐽)
126125ralrimiva 2949 . 2 (𝜑 → ∀𝑎𝐾 (𝐹𝑎) ∈ 𝐽)
127 ucncn.3 . . . 4 (𝜑𝑅 ∈ TopSp)
1283, 5istps 20551 . . . 4 (𝑅 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘(Base‘𝑅)))
129127, 128sylib 207 . . 3 (𝜑𝐽 ∈ (TopOn‘(Base‘𝑅)))
130 ucncn.4 . . . 4 (𝜑𝑆 ∈ TopSp)
13110, 12istps 20551 . . . 4 (𝑆 ∈ TopSp ↔ 𝐾 ∈ (TopOn‘(Base‘𝑆)))
132130, 131sylib 207 . . 3 (𝜑𝐾 ∈ (TopOn‘(Base‘𝑆)))
133 iscn 20849 . . 3 ((𝐽 ∈ (TopOn‘(Base‘𝑅)) ∧ 𝐾 ∈ (TopOn‘(Base‘𝑆))) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝐽)))
134129, 132, 133syl2anc 691 . 2 (𝜑 → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝐽)))
13519, 126, 134mpbir2and 959 1 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  wrex 2897  wss 3540  {csn 4125   class class class wbr 4583  ccnv 5037  dom cdm 5038  cima 5041  Rel wrel 5043   Fn wfn 5799  wf 5800  cfv 5804  (class class class)co 6549  Basecbs 15695  TopOpenctopn 15905  TopOnctopon 20518  TopSpctps 20519   Cn ccn 20838  UnifOncust 21813  unifTopcutop 21844  UnifStcuss 21867  UnifSpcusp 21868   Cnucucn 21889
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-map 7746  df-top 20521  df-topon 20523  df-topsp 20524  df-cn 20841  df-ust 21814  df-utop 21845  df-usp 21871  df-ucn 21890
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator