Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpspropd Structured version   Visualization version   GIF version

Theorem tpspropd 20555
 Description: A topological space depends only on the base and topology components. (Contributed by NM, 18-Jul-2006.) (Revised by Mario Carneiro, 13-Aug-2015.)
Hypotheses
Ref Expression
tpspropd.1 (𝜑 → (Base‘𝐾) = (Base‘𝐿))
tpspropd.2 (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿))
Assertion
Ref Expression
tpspropd (𝜑 → (𝐾 ∈ TopSp ↔ 𝐿 ∈ TopSp))

Proof of Theorem tpspropd
StepHypRef Expression
1 tpspropd.2 . . 3 (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿))
2 tpspropd.1 . . . 4 (𝜑 → (Base‘𝐾) = (Base‘𝐿))
32fveq2d 6107 . . 3 (𝜑 → (TopOn‘(Base‘𝐾)) = (TopOn‘(Base‘𝐿)))
41, 3eleq12d 2682 . 2 (𝜑 → ((TopOpen‘𝐾) ∈ (TopOn‘(Base‘𝐾)) ↔ (TopOpen‘𝐿) ∈ (TopOn‘(Base‘𝐿))))
5 eqid 2610 . . 3 (Base‘𝐾) = (Base‘𝐾)
6 eqid 2610 . . 3 (TopOpen‘𝐾) = (TopOpen‘𝐾)
75, 6istps 20551 . 2 (𝐾 ∈ TopSp ↔ (TopOpen‘𝐾) ∈ (TopOn‘(Base‘𝐾)))
8 eqid 2610 . . 3 (Base‘𝐿) = (Base‘𝐿)
9 eqid 2610 . . 3 (TopOpen‘𝐿) = (TopOpen‘𝐿)
108, 9istps 20551 . 2 (𝐿 ∈ TopSp ↔ (TopOpen‘𝐿) ∈ (TopOn‘(Base‘𝐿)))
114, 7, 103bitr4g 302 1 (𝜑 → (𝐾 ∈ TopSp ↔ 𝐿 ∈ TopSp))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   = wceq 1475   ∈ wcel 1977  ‘cfv 5804  Basecbs 15695  TopOpenctopn 15905  TopOnctopon 20518  TopSpctps 20519 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-iota 5768  df-fun 5806  df-fv 5812  df-top 20521  df-topon 20523  df-topsp 20524 This theorem is referenced by:  tpsprop2d  20556  xmspropd  22088
 Copyright terms: Public domain W3C validator