MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  istopon Structured version   Visualization version   GIF version

Theorem istopon 20540
Description: Property of being a topology with a given base set. (Contributed by Stefan O'Rear, 31-Jan-2015.) (Revised by Mario Carneiro, 13-Aug-2015.)
Assertion
Ref Expression
istopon (𝐽 ∈ (TopOn‘𝐵) ↔ (𝐽 ∈ Top ∧ 𝐵 = 𝐽))

Proof of Theorem istopon
Dummy variables 𝑏 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvex 6131 . 2 (𝐽 ∈ (TopOn‘𝐵) → 𝐵 ∈ V)
2 uniexg 6853 . . . 4 (𝐽 ∈ Top → 𝐽 ∈ V)
3 eleq1 2676 . . . 4 (𝐵 = 𝐽 → (𝐵 ∈ V ↔ 𝐽 ∈ V))
42, 3syl5ibrcom 236 . . 3 (𝐽 ∈ Top → (𝐵 = 𝐽𝐵 ∈ V))
54imp 444 . 2 ((𝐽 ∈ Top ∧ 𝐵 = 𝐽) → 𝐵 ∈ V)
6 eqeq1 2614 . . . . . 6 (𝑏 = 𝐵 → (𝑏 = 𝑗𝐵 = 𝑗))
76rabbidv 3164 . . . . 5 (𝑏 = 𝐵 → {𝑗 ∈ Top ∣ 𝑏 = 𝑗} = {𝑗 ∈ Top ∣ 𝐵 = 𝑗})
8 df-topon 20523 . . . . 5 TopOn = (𝑏 ∈ V ↦ {𝑗 ∈ Top ∣ 𝑏 = 𝑗})
9 vpwex 4775 . . . . . . 7 𝒫 𝑏 ∈ V
109pwex 4774 . . . . . 6 𝒫 𝒫 𝑏 ∈ V
11 rabss 3642 . . . . . . 7 ({𝑗 ∈ Top ∣ 𝑏 = 𝑗} ⊆ 𝒫 𝒫 𝑏 ↔ ∀𝑗 ∈ Top (𝑏 = 𝑗𝑗 ∈ 𝒫 𝒫 𝑏))
12 pwuni 4825 . . . . . . . . . 10 𝑗 ⊆ 𝒫 𝑗
13 pweq 4111 . . . . . . . . . 10 (𝑏 = 𝑗 → 𝒫 𝑏 = 𝒫 𝑗)
1412, 13syl5sseqr 3617 . . . . . . . . 9 (𝑏 = 𝑗𝑗 ⊆ 𝒫 𝑏)
15 selpw 4115 . . . . . . . . 9 (𝑗 ∈ 𝒫 𝒫 𝑏𝑗 ⊆ 𝒫 𝑏)
1614, 15sylibr 223 . . . . . . . 8 (𝑏 = 𝑗𝑗 ∈ 𝒫 𝒫 𝑏)
1716a1i 11 . . . . . . 7 (𝑗 ∈ Top → (𝑏 = 𝑗𝑗 ∈ 𝒫 𝒫 𝑏))
1811, 17mprgbir 2911 . . . . . 6 {𝑗 ∈ Top ∣ 𝑏 = 𝑗} ⊆ 𝒫 𝒫 𝑏
1910, 18ssexi 4731 . . . . 5 {𝑗 ∈ Top ∣ 𝑏 = 𝑗} ∈ V
207, 8, 19fvmpt3i 6196 . . . 4 (𝐵 ∈ V → (TopOn‘𝐵) = {𝑗 ∈ Top ∣ 𝐵 = 𝑗})
2120eleq2d 2673 . . 3 (𝐵 ∈ V → (𝐽 ∈ (TopOn‘𝐵) ↔ 𝐽 ∈ {𝑗 ∈ Top ∣ 𝐵 = 𝑗}))
22 unieq 4380 . . . . 5 (𝑗 = 𝐽 𝑗 = 𝐽)
2322eqeq2d 2620 . . . 4 (𝑗 = 𝐽 → (𝐵 = 𝑗𝐵 = 𝐽))
2423elrab 3331 . . 3 (𝐽 ∈ {𝑗 ∈ Top ∣ 𝐵 = 𝑗} ↔ (𝐽 ∈ Top ∧ 𝐵 = 𝐽))
2521, 24syl6bb 275 . 2 (𝐵 ∈ V → (𝐽 ∈ (TopOn‘𝐵) ↔ (𝐽 ∈ Top ∧ 𝐵 = 𝐽)))
261, 5, 25pm5.21nii 367 1 (𝐽 ∈ (TopOn‘𝐵) ↔ (𝐽 ∈ Top ∧ 𝐵 = 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  {crab 2900  Vcvv 3173  wss 3540  𝒫 cpw 4108   cuni 4372  cfv 5804  Topctop 20517  TopOnctopon 20518
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-iota 5768  df-fun 5806  df-fv 5812  df-topon 20523
This theorem is referenced by:  topontop  20541  toponuni  20542  toponcom  20545  toptopon  20548  istps2  20552  tgtopon  20586  distopon  20611  indistopon  20615  fctop  20618  cctop  20620  ppttop  20621  epttop  20623  mretopd  20706  toponmre  20707  resttopon  20775  resttopon2  20782  kgentopon  21151  txtopon  21204  pttopon  21209  xkotopon  21213  qtoptopon  21317  flimtopon  21584  fclstopon  21626  fclsfnflim  21641  utoptopon  21850  qtopt1  29230  neibastop1  31524  onsuctopon  31603  rfcnpre1  38201  cnfex  38210  icccncfext  38773  stoweidlem47  38940
  Copyright terms: Public domain W3C validator