Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > istopon | Structured version Visualization version GIF version |
Description: Property of being a topology with a given base set. (Contributed by Stefan O'Rear, 31-Jan-2015.) (Revised by Mario Carneiro, 13-Aug-2015.) |
Ref | Expression |
---|---|
istopon | ⊢ (𝐽 ∈ (TopOn‘𝐵) ↔ (𝐽 ∈ Top ∧ 𝐵 = ∪ 𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvex 6131 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐵 ∈ V) | |
2 | uniexg 6853 | . . . 4 ⊢ (𝐽 ∈ Top → ∪ 𝐽 ∈ V) | |
3 | eleq1 2676 | . . . 4 ⊢ (𝐵 = ∪ 𝐽 → (𝐵 ∈ V ↔ ∪ 𝐽 ∈ V)) | |
4 | 2, 3 | syl5ibrcom 236 | . . 3 ⊢ (𝐽 ∈ Top → (𝐵 = ∪ 𝐽 → 𝐵 ∈ V)) |
5 | 4 | imp 444 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐵 = ∪ 𝐽) → 𝐵 ∈ V) |
6 | eqeq1 2614 | . . . . . 6 ⊢ (𝑏 = 𝐵 → (𝑏 = ∪ 𝑗 ↔ 𝐵 = ∪ 𝑗)) | |
7 | 6 | rabbidv 3164 | . . . . 5 ⊢ (𝑏 = 𝐵 → {𝑗 ∈ Top ∣ 𝑏 = ∪ 𝑗} = {𝑗 ∈ Top ∣ 𝐵 = ∪ 𝑗}) |
8 | df-topon 20523 | . . . . 5 ⊢ TopOn = (𝑏 ∈ V ↦ {𝑗 ∈ Top ∣ 𝑏 = ∪ 𝑗}) | |
9 | vpwex 4775 | . . . . . . 7 ⊢ 𝒫 𝑏 ∈ V | |
10 | 9 | pwex 4774 | . . . . . 6 ⊢ 𝒫 𝒫 𝑏 ∈ V |
11 | rabss 3642 | . . . . . . 7 ⊢ ({𝑗 ∈ Top ∣ 𝑏 = ∪ 𝑗} ⊆ 𝒫 𝒫 𝑏 ↔ ∀𝑗 ∈ Top (𝑏 = ∪ 𝑗 → 𝑗 ∈ 𝒫 𝒫 𝑏)) | |
12 | pwuni 4825 | . . . . . . . . . 10 ⊢ 𝑗 ⊆ 𝒫 ∪ 𝑗 | |
13 | pweq 4111 | . . . . . . . . . 10 ⊢ (𝑏 = ∪ 𝑗 → 𝒫 𝑏 = 𝒫 ∪ 𝑗) | |
14 | 12, 13 | syl5sseqr 3617 | . . . . . . . . 9 ⊢ (𝑏 = ∪ 𝑗 → 𝑗 ⊆ 𝒫 𝑏) |
15 | selpw 4115 | . . . . . . . . 9 ⊢ (𝑗 ∈ 𝒫 𝒫 𝑏 ↔ 𝑗 ⊆ 𝒫 𝑏) | |
16 | 14, 15 | sylibr 223 | . . . . . . . 8 ⊢ (𝑏 = ∪ 𝑗 → 𝑗 ∈ 𝒫 𝒫 𝑏) |
17 | 16 | a1i 11 | . . . . . . 7 ⊢ (𝑗 ∈ Top → (𝑏 = ∪ 𝑗 → 𝑗 ∈ 𝒫 𝒫 𝑏)) |
18 | 11, 17 | mprgbir 2911 | . . . . . 6 ⊢ {𝑗 ∈ Top ∣ 𝑏 = ∪ 𝑗} ⊆ 𝒫 𝒫 𝑏 |
19 | 10, 18 | ssexi 4731 | . . . . 5 ⊢ {𝑗 ∈ Top ∣ 𝑏 = ∪ 𝑗} ∈ V |
20 | 7, 8, 19 | fvmpt3i 6196 | . . . 4 ⊢ (𝐵 ∈ V → (TopOn‘𝐵) = {𝑗 ∈ Top ∣ 𝐵 = ∪ 𝑗}) |
21 | 20 | eleq2d 2673 | . . 3 ⊢ (𝐵 ∈ V → (𝐽 ∈ (TopOn‘𝐵) ↔ 𝐽 ∈ {𝑗 ∈ Top ∣ 𝐵 = ∪ 𝑗})) |
22 | unieq 4380 | . . . . 5 ⊢ (𝑗 = 𝐽 → ∪ 𝑗 = ∪ 𝐽) | |
23 | 22 | eqeq2d 2620 | . . . 4 ⊢ (𝑗 = 𝐽 → (𝐵 = ∪ 𝑗 ↔ 𝐵 = ∪ 𝐽)) |
24 | 23 | elrab 3331 | . . 3 ⊢ (𝐽 ∈ {𝑗 ∈ Top ∣ 𝐵 = ∪ 𝑗} ↔ (𝐽 ∈ Top ∧ 𝐵 = ∪ 𝐽)) |
25 | 21, 24 | syl6bb 275 | . 2 ⊢ (𝐵 ∈ V → (𝐽 ∈ (TopOn‘𝐵) ↔ (𝐽 ∈ Top ∧ 𝐵 = ∪ 𝐽))) |
26 | 1, 5, 25 | pm5.21nii 367 | 1 ⊢ (𝐽 ∈ (TopOn‘𝐵) ↔ (𝐽 ∈ Top ∧ 𝐵 = ∪ 𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∧ wa 383 = wceq 1475 ∈ wcel 1977 {crab 2900 Vcvv 3173 ⊆ wss 3540 𝒫 cpw 4108 ∪ cuni 4372 ‘cfv 5804 Topctop 20517 TopOnctopon 20518 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-iota 5768 df-fun 5806 df-fv 5812 df-topon 20523 |
This theorem is referenced by: topontop 20541 toponuni 20542 toponcom 20545 toptopon 20548 istps2 20552 tgtopon 20586 distopon 20611 indistopon 20615 fctop 20618 cctop 20620 ppttop 20621 epttop 20623 mretopd 20706 toponmre 20707 resttopon 20775 resttopon2 20782 kgentopon 21151 txtopon 21204 pttopon 21209 xkotopon 21213 qtoptopon 21317 flimtopon 21584 fclstopon 21626 fclsfnflim 21641 utoptopon 21850 qtopt1 29230 neibastop1 31524 onsuctopon 31603 rfcnpre1 38201 cnfex 38210 icccncfext 38773 stoweidlem47 38940 |
Copyright terms: Public domain | W3C validator |