Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cnfex | Structured version Visualization version GIF version |
Description: The class of continuous functions between two topologies is a set. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
Ref | Expression |
---|---|
cnfex | ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 Cn 𝐾) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2610 | . . . . 5 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
2 | 1 | jctr 563 | . . . 4 ⊢ (𝐽 ∈ Top → (𝐽 ∈ Top ∧ ∪ 𝐽 = ∪ 𝐽)) |
3 | istopon 20540 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘∪ 𝐽) ↔ (𝐽 ∈ Top ∧ ∪ 𝐽 = ∪ 𝐽)) | |
4 | 2, 3 | sylibr 223 | . . 3 ⊢ (𝐽 ∈ Top → 𝐽 ∈ (TopOn‘∪ 𝐽)) |
5 | eqid 2610 | . . . . 5 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
6 | 5 | jctr 563 | . . . 4 ⊢ (𝐾 ∈ Top → (𝐾 ∈ Top ∧ ∪ 𝐾 = ∪ 𝐾)) |
7 | istopon 20540 | . . . 4 ⊢ (𝐾 ∈ (TopOn‘∪ 𝐾) ↔ (𝐾 ∈ Top ∧ ∪ 𝐾 = ∪ 𝐾)) | |
8 | 6, 7 | sylibr 223 | . . 3 ⊢ (𝐾 ∈ Top → 𝐾 ∈ (TopOn‘∪ 𝐾)) |
9 | cnfval 20847 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘∪ 𝐽) ∧ 𝐾 ∈ (TopOn‘∪ 𝐾)) → (𝐽 Cn 𝐾) = {𝑓 ∈ (∪ 𝐾 ↑𝑚 ∪ 𝐽) ∣ ∀𝑦 ∈ 𝐾 (◡𝑓 “ 𝑦) ∈ 𝐽}) | |
10 | 4, 8, 9 | syl2an 493 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 Cn 𝐾) = {𝑓 ∈ (∪ 𝐾 ↑𝑚 ∪ 𝐽) ∣ ∀𝑦 ∈ 𝐾 (◡𝑓 “ 𝑦) ∈ 𝐽}) |
11 | uniexg 6853 | . . . . 5 ⊢ (𝐾 ∈ Top → ∪ 𝐾 ∈ V) | |
12 | uniexg 6853 | . . . . 5 ⊢ (𝐽 ∈ Top → ∪ 𝐽 ∈ V) | |
13 | mapvalg 7754 | . . . . 5 ⊢ ((∪ 𝐾 ∈ V ∧ ∪ 𝐽 ∈ V) → (∪ 𝐾 ↑𝑚 ∪ 𝐽) = {𝑓 ∣ 𝑓:∪ 𝐽⟶∪ 𝐾}) | |
14 | 11, 12, 13 | syl2anr 494 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (∪ 𝐾 ↑𝑚 ∪ 𝐽) = {𝑓 ∣ 𝑓:∪ 𝐽⟶∪ 𝐾}) |
15 | mapex 7750 | . . . . 5 ⊢ ((∪ 𝐽 ∈ V ∧ ∪ 𝐾 ∈ V) → {𝑓 ∣ 𝑓:∪ 𝐽⟶∪ 𝐾} ∈ V) | |
16 | 12, 11, 15 | syl2an 493 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → {𝑓 ∣ 𝑓:∪ 𝐽⟶∪ 𝐾} ∈ V) |
17 | 14, 16 | eqeltrd 2688 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (∪ 𝐾 ↑𝑚 ∪ 𝐽) ∈ V) |
18 | rabexg 4739 | . . 3 ⊢ ((∪ 𝐾 ↑𝑚 ∪ 𝐽) ∈ V → {𝑓 ∈ (∪ 𝐾 ↑𝑚 ∪ 𝐽) ∣ ∀𝑦 ∈ 𝐾 (◡𝑓 “ 𝑦) ∈ 𝐽} ∈ V) | |
19 | 17, 18 | syl 17 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → {𝑓 ∈ (∪ 𝐾 ↑𝑚 ∪ 𝐽) ∣ ∀𝑦 ∈ 𝐾 (◡𝑓 “ 𝑦) ∈ 𝐽} ∈ V) |
20 | 10, 19 | eqeltrd 2688 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 Cn 𝐾) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1475 ∈ wcel 1977 {cab 2596 ∀wral 2896 {crab 2900 Vcvv 3173 ∪ cuni 4372 ◡ccnv 5037 “ cima 5041 ⟶wf 5800 ‘cfv 5804 (class class class)co 6549 ↑𝑚 cmap 7744 Topctop 20517 TopOnctopon 20518 Cn ccn 20838 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-fv 5812 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-map 7746 df-topon 20523 df-cn 20841 |
This theorem is referenced by: stoweidlem53 38946 stoweidlem57 38950 stoweidlem59 38952 |
Copyright terms: Public domain | W3C validator |