Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem47 Structured version   Visualization version   GIF version

Theorem stoweidlem47 38940
 Description: Subtracting a constant from a real continuous function gives another continuous function. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem47.1 𝑡𝐹
stoweidlem47.2 𝑡𝑆
stoweidlem47.3 𝑡𝜑
stoweidlem47.4 𝑇 = 𝐽
stoweidlem47.5 𝐺 = (𝑇 × {-𝑆})
stoweidlem47.6 𝐾 = (topGen‘ran (,))
stoweidlem47.7 (𝜑𝐽 ∈ Top)
stoweidlem47.8 𝐶 = (𝐽 Cn 𝐾)
stoweidlem47.9 (𝜑𝐹𝐶)
stoweidlem47.10 (𝜑𝑆 ∈ ℝ)
Assertion
Ref Expression
stoweidlem47 (𝜑 → (𝑡𝑇 ↦ ((𝐹𝑡) − 𝑆)) ∈ 𝐶)
Distinct variable groups:   𝑡,𝐽   𝑡,𝐾   𝑡,𝑇
Allowed substitution hints:   𝜑(𝑡)   𝐶(𝑡)   𝑆(𝑡)   𝐹(𝑡)   𝐺(𝑡)

Proof of Theorem stoweidlem47
StepHypRef Expression
1 stoweidlem47.3 . . 3 𝑡𝜑
2 stoweidlem47.5 . . . . . . 7 𝐺 = (𝑇 × {-𝑆})
32fveq1i 6104 . . . . . 6 (𝐺𝑡) = ((𝑇 × {-𝑆})‘𝑡)
4 stoweidlem47.10 . . . . . . . 8 (𝜑𝑆 ∈ ℝ)
54renegcld 10336 . . . . . . 7 (𝜑 → -𝑆 ∈ ℝ)
6 fvconst2g 6372 . . . . . . 7 ((-𝑆 ∈ ℝ ∧ 𝑡𝑇) → ((𝑇 × {-𝑆})‘𝑡) = -𝑆)
75, 6sylan 487 . . . . . 6 ((𝜑𝑡𝑇) → ((𝑇 × {-𝑆})‘𝑡) = -𝑆)
83, 7syl5eq 2656 . . . . 5 ((𝜑𝑡𝑇) → (𝐺𝑡) = -𝑆)
98oveq2d 6565 . . . 4 ((𝜑𝑡𝑇) → ((𝐹𝑡) + (𝐺𝑡)) = ((𝐹𝑡) + -𝑆))
10 stoweidlem47.6 . . . . . . . 8 𝐾 = (topGen‘ran (,))
11 stoweidlem47.4 . . . . . . . 8 𝑇 = 𝐽
12 stoweidlem47.8 . . . . . . . 8 𝐶 = (𝐽 Cn 𝐾)
13 stoweidlem47.9 . . . . . . . 8 (𝜑𝐹𝐶)
1410, 11, 12, 13fcnre 38207 . . . . . . 7 (𝜑𝐹:𝑇⟶ℝ)
1514fnvinran 38196 . . . . . 6 ((𝜑𝑡𝑇) → (𝐹𝑡) ∈ ℝ)
1615recnd 9947 . . . . 5 ((𝜑𝑡𝑇) → (𝐹𝑡) ∈ ℂ)
174recnd 9947 . . . . . 6 (𝜑𝑆 ∈ ℂ)
1817adantr 480 . . . . 5 ((𝜑𝑡𝑇) → 𝑆 ∈ ℂ)
1916, 18negsubd 10277 . . . 4 ((𝜑𝑡𝑇) → ((𝐹𝑡) + -𝑆) = ((𝐹𝑡) − 𝑆))
209, 19eqtrd 2644 . . 3 ((𝜑𝑡𝑇) → ((𝐹𝑡) + (𝐺𝑡)) = ((𝐹𝑡) − 𝑆))
211, 20mpteq2da 4671 . 2 (𝜑 → (𝑡𝑇 ↦ ((𝐹𝑡) + (𝐺𝑡))) = (𝑡𝑇 ↦ ((𝐹𝑡) − 𝑆)))
22 stoweidlem47.1 . . . 4 𝑡𝐹
23 nfcv 2751 . . . . . 6 𝑡𝑇
24 stoweidlem47.2 . . . . . . . 8 𝑡𝑆
2524nfneg 10156 . . . . . . 7 𝑡-𝑆
2625nfsn 4189 . . . . . 6 𝑡{-𝑆}
2723, 26nfxp 5066 . . . . 5 𝑡(𝑇 × {-𝑆})
282, 27nfcxfr 2749 . . . 4 𝑡𝐺
29 stoweidlem47.7 . . . . 5 (𝜑𝐽 ∈ Top)
3011a1i 11 . . . . 5 (𝜑𝑇 = 𝐽)
31 istopon 20540 . . . . 5 (𝐽 ∈ (TopOn‘𝑇) ↔ (𝐽 ∈ Top ∧ 𝑇 = 𝐽))
3229, 30, 31sylanbrc 695 . . . 4 (𝜑𝐽 ∈ (TopOn‘𝑇))
3313, 12syl6eleq 2698 . . . 4 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
34 retopon 22377 . . . . . . . 8 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
3510, 34eqeltri 2684 . . . . . . 7 𝐾 ∈ (TopOn‘ℝ)
3635a1i 11 . . . . . 6 (𝜑𝐾 ∈ (TopOn‘ℝ))
37 cnconst2 20897 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑇) ∧ 𝐾 ∈ (TopOn‘ℝ) ∧ -𝑆 ∈ ℝ) → (𝑇 × {-𝑆}) ∈ (𝐽 Cn 𝐾))
3832, 36, 5, 37syl3anc 1318 . . . . 5 (𝜑 → (𝑇 × {-𝑆}) ∈ (𝐽 Cn 𝐾))
392, 38syl5eqel 2692 . . . 4 (𝜑𝐺 ∈ (𝐽 Cn 𝐾))
4022, 28, 1, 10, 32, 33, 39refsum2cn 38220 . . 3 (𝜑 → (𝑡𝑇 ↦ ((𝐹𝑡) + (𝐺𝑡))) ∈ (𝐽 Cn 𝐾))
4140, 12syl6eleqr 2699 . 2 (𝜑 → (𝑡𝑇 ↦ ((𝐹𝑡) + (𝐺𝑡))) ∈ 𝐶)
4221, 41eqeltrrd 2689 1 (𝜑 → (𝑡𝑇 ↦ ((𝐹𝑡) − 𝑆)) ∈ 𝐶)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475  Ⅎwnf 1699   ∈ wcel 1977  Ⅎwnfc 2738  {csn 4125  ∪ cuni 4372   ↦ cmpt 4643   × cxp 5036  ran crn 5039  ‘cfv 5804  (class class class)co 6549  ℂcc 9813  ℝcr 9814   + caddc 9818   − cmin 10145  -cneg 10146  (,)cioo 12046  topGenctg 15921  Topctop 20517  TopOnctopon 20518   Cn ccn 20838 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-icc 12053  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cn 20841  df-cnp 20842  df-tx 21175  df-hmeo 21368  df-xms 21935  df-ms 21936  df-tms 21937 This theorem is referenced by:  stoweidlem62  38955
 Copyright terms: Public domain W3C validator