MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mretopd Structured version   Visualization version   GIF version

Theorem mretopd 20706
Description: A Moore collection which is closed under finite unions called topological; such a collection is the closed sets of a canonically associated topology. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Hypotheses
Ref Expression
mretopd.m (𝜑𝑀 ∈ (Moore‘𝐵))
mretopd.z (𝜑 → ∅ ∈ 𝑀)
mretopd.u ((𝜑𝑥𝑀𝑦𝑀) → (𝑥𝑦) ∈ 𝑀)
mretopd.j 𝐽 = {𝑧 ∈ 𝒫 𝐵 ∣ (𝐵𝑧) ∈ 𝑀}
Assertion
Ref Expression
mretopd (𝜑 → (𝐽 ∈ (TopOn‘𝐵) ∧ 𝑀 = (Clsd‘𝐽)))
Distinct variable groups:   𝜑,𝑥,𝑦,𝑧   𝑥,𝑀,𝑦,𝑧   𝑥,𝐽,𝑦   𝑥,𝐵,𝑦,𝑧
Allowed substitution hint:   𝐽(𝑧)

Proof of Theorem mretopd
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unieq 4380 . . . . . . . . 9 (𝑎 = ∅ → 𝑎 = ∅)
2 uni0 4401 . . . . . . . . 9 ∅ = ∅
31, 2syl6eq 2660 . . . . . . . 8 (𝑎 = ∅ → 𝑎 = ∅)
43eleq1d 2672 . . . . . . 7 (𝑎 = ∅ → ( 𝑎𝐽 ↔ ∅ ∈ 𝐽))
5 mretopd.j . . . . . . . . . . . . . 14 𝐽 = {𝑧 ∈ 𝒫 𝐵 ∣ (𝐵𝑧) ∈ 𝑀}
6 ssrab2 3650 . . . . . . . . . . . . . 14 {𝑧 ∈ 𝒫 𝐵 ∣ (𝐵𝑧) ∈ 𝑀} ⊆ 𝒫 𝐵
75, 6eqsstri 3598 . . . . . . . . . . . . 13 𝐽 ⊆ 𝒫 𝐵
8 sstr 3576 . . . . . . . . . . . . 13 ((𝑎𝐽𝐽 ⊆ 𝒫 𝐵) → 𝑎 ⊆ 𝒫 𝐵)
97, 8mpan2 703 . . . . . . . . . . . 12 (𝑎𝐽𝑎 ⊆ 𝒫 𝐵)
109adantl 481 . . . . . . . . . . 11 ((𝜑𝑎𝐽) → 𝑎 ⊆ 𝒫 𝐵)
11 sspwuni 4547 . . . . . . . . . . 11 (𝑎 ⊆ 𝒫 𝐵 𝑎𝐵)
1210, 11sylib 207 . . . . . . . . . 10 ((𝜑𝑎𝐽) → 𝑎𝐵)
13 vuniex 6852 . . . . . . . . . . 11 𝑎 ∈ V
1413elpw 4114 . . . . . . . . . 10 ( 𝑎 ∈ 𝒫 𝐵 𝑎𝐵)
1512, 14sylibr 223 . . . . . . . . 9 ((𝜑𝑎𝐽) → 𝑎 ∈ 𝒫 𝐵)
1615adantr 480 . . . . . . . 8 (((𝜑𝑎𝐽) ∧ 𝑎 ≠ ∅) → 𝑎 ∈ 𝒫 𝐵)
17 uniiun 4509 . . . . . . . . . 10 𝑎 = 𝑏𝑎 𝑏
1817difeq2i 3687 . . . . . . . . 9 (𝐵 𝑎) = (𝐵 𝑏𝑎 𝑏)
19 iindif2 4525 . . . . . . . . . . 11 (𝑎 ≠ ∅ → 𝑏𝑎 (𝐵𝑏) = (𝐵 𝑏𝑎 𝑏))
2019adantl 481 . . . . . . . . . 10 (((𝜑𝑎𝐽) ∧ 𝑎 ≠ ∅) → 𝑏𝑎 (𝐵𝑏) = (𝐵 𝑏𝑎 𝑏))
21 mretopd.m . . . . . . . . . . . 12 (𝜑𝑀 ∈ (Moore‘𝐵))
2221ad2antrr 758 . . . . . . . . . . 11 (((𝜑𝑎𝐽) ∧ 𝑎 ≠ ∅) → 𝑀 ∈ (Moore‘𝐵))
23 simpr 476 . . . . . . . . . . 11 (((𝜑𝑎𝐽) ∧ 𝑎 ≠ ∅) → 𝑎 ≠ ∅)
24 difeq2 3684 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑏 → (𝐵𝑧) = (𝐵𝑏))
2524eleq1d 2672 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑏 → ((𝐵𝑧) ∈ 𝑀 ↔ (𝐵𝑏) ∈ 𝑀))
2625, 5elrab2 3333 . . . . . . . . . . . . . . 15 (𝑏𝐽 ↔ (𝑏 ∈ 𝒫 𝐵 ∧ (𝐵𝑏) ∈ 𝑀))
2726simprbi 479 . . . . . . . . . . . . . 14 (𝑏𝐽 → (𝐵𝑏) ∈ 𝑀)
2827rgen 2906 . . . . . . . . . . . . 13 𝑏𝐽 (𝐵𝑏) ∈ 𝑀
29 ssralv 3629 . . . . . . . . . . . . . 14 (𝑎𝐽 → (∀𝑏𝐽 (𝐵𝑏) ∈ 𝑀 → ∀𝑏𝑎 (𝐵𝑏) ∈ 𝑀))
3029adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑎𝐽) → (∀𝑏𝐽 (𝐵𝑏) ∈ 𝑀 → ∀𝑏𝑎 (𝐵𝑏) ∈ 𝑀))
3128, 30mpi 20 . . . . . . . . . . . 12 ((𝜑𝑎𝐽) → ∀𝑏𝑎 (𝐵𝑏) ∈ 𝑀)
3231adantr 480 . . . . . . . . . . 11 (((𝜑𝑎𝐽) ∧ 𝑎 ≠ ∅) → ∀𝑏𝑎 (𝐵𝑏) ∈ 𝑀)
33 mreiincl 16079 . . . . . . . . . . 11 ((𝑀 ∈ (Moore‘𝐵) ∧ 𝑎 ≠ ∅ ∧ ∀𝑏𝑎 (𝐵𝑏) ∈ 𝑀) → 𝑏𝑎 (𝐵𝑏) ∈ 𝑀)
3422, 23, 32, 33syl3anc 1318 . . . . . . . . . 10 (((𝜑𝑎𝐽) ∧ 𝑎 ≠ ∅) → 𝑏𝑎 (𝐵𝑏) ∈ 𝑀)
3520, 34eqeltrrd 2689 . . . . . . . . 9 (((𝜑𝑎𝐽) ∧ 𝑎 ≠ ∅) → (𝐵 𝑏𝑎 𝑏) ∈ 𝑀)
3618, 35syl5eqel 2692 . . . . . . . 8 (((𝜑𝑎𝐽) ∧ 𝑎 ≠ ∅) → (𝐵 𝑎) ∈ 𝑀)
37 difeq2 3684 . . . . . . . . . 10 (𝑧 = 𝑎 → (𝐵𝑧) = (𝐵 𝑎))
3837eleq1d 2672 . . . . . . . . 9 (𝑧 = 𝑎 → ((𝐵𝑧) ∈ 𝑀 ↔ (𝐵 𝑎) ∈ 𝑀))
3938, 5elrab2 3333 . . . . . . . 8 ( 𝑎𝐽 ↔ ( 𝑎 ∈ 𝒫 𝐵 ∧ (𝐵 𝑎) ∈ 𝑀))
4016, 36, 39sylanbrc 695 . . . . . . 7 (((𝜑𝑎𝐽) ∧ 𝑎 ≠ ∅) → 𝑎𝐽)
41 0elpw 4760 . . . . . . . . . 10 ∅ ∈ 𝒫 𝐵
4241a1i 11 . . . . . . . . 9 (𝜑 → ∅ ∈ 𝒫 𝐵)
43 mre1cl 16077 . . . . . . . . . 10 (𝑀 ∈ (Moore‘𝐵) → 𝐵𝑀)
4421, 43syl 17 . . . . . . . . 9 (𝜑𝐵𝑀)
45 difeq2 3684 . . . . . . . . . . . 12 (𝑧 = ∅ → (𝐵𝑧) = (𝐵 ∖ ∅))
46 dif0 3904 . . . . . . . . . . . 12 (𝐵 ∖ ∅) = 𝐵
4745, 46syl6eq 2660 . . . . . . . . . . 11 (𝑧 = ∅ → (𝐵𝑧) = 𝐵)
4847eleq1d 2672 . . . . . . . . . 10 (𝑧 = ∅ → ((𝐵𝑧) ∈ 𝑀𝐵𝑀))
4948, 5elrab2 3333 . . . . . . . . 9 (∅ ∈ 𝐽 ↔ (∅ ∈ 𝒫 𝐵𝐵𝑀))
5042, 44, 49sylanbrc 695 . . . . . . . 8 (𝜑 → ∅ ∈ 𝐽)
5150adantr 480 . . . . . . 7 ((𝜑𝑎𝐽) → ∅ ∈ 𝐽)
524, 40, 51pm2.61ne 2867 . . . . . 6 ((𝜑𝑎𝐽) → 𝑎𝐽)
5352ex 449 . . . . 5 (𝜑 → (𝑎𝐽 𝑎𝐽))
5453alrimiv 1842 . . . 4 (𝜑 → ∀𝑎(𝑎𝐽 𝑎𝐽))
55 inss1 3795 . . . . . . . 8 (𝑎𝑏) ⊆ 𝑎
56 difeq2 3684 . . . . . . . . . . . . 13 (𝑧 = 𝑎 → (𝐵𝑧) = (𝐵𝑎))
5756eleq1d 2672 . . . . . . . . . . . 12 (𝑧 = 𝑎 → ((𝐵𝑧) ∈ 𝑀 ↔ (𝐵𝑎) ∈ 𝑀))
5857, 5elrab2 3333 . . . . . . . . . . 11 (𝑎𝐽 ↔ (𝑎 ∈ 𝒫 𝐵 ∧ (𝐵𝑎) ∈ 𝑀))
5958simplbi 475 . . . . . . . . . 10 (𝑎𝐽𝑎 ∈ 𝒫 𝐵)
6059elpwid 4118 . . . . . . . . 9 (𝑎𝐽𝑎𝐵)
6160ad2antrl 760 . . . . . . . 8 ((𝜑 ∧ (𝑎𝐽𝑏𝐽)) → 𝑎𝐵)
6255, 61syl5ss 3579 . . . . . . 7 ((𝜑 ∧ (𝑎𝐽𝑏𝐽)) → (𝑎𝑏) ⊆ 𝐵)
63 vex 3176 . . . . . . . . 9 𝑎 ∈ V
6463inex1 4727 . . . . . . . 8 (𝑎𝑏) ∈ V
6564elpw 4114 . . . . . . 7 ((𝑎𝑏) ∈ 𝒫 𝐵 ↔ (𝑎𝑏) ⊆ 𝐵)
6662, 65sylibr 223 . . . . . 6 ((𝜑 ∧ (𝑎𝐽𝑏𝐽)) → (𝑎𝑏) ∈ 𝒫 𝐵)
67 difindi 3840 . . . . . . 7 (𝐵 ∖ (𝑎𝑏)) = ((𝐵𝑎) ∪ (𝐵𝑏))
6858simprbi 479 . . . . . . . . 9 (𝑎𝐽 → (𝐵𝑎) ∈ 𝑀)
6968ad2antrl 760 . . . . . . . 8 ((𝜑 ∧ (𝑎𝐽𝑏𝐽)) → (𝐵𝑎) ∈ 𝑀)
7027ad2antll 761 . . . . . . . 8 ((𝜑 ∧ (𝑎𝐽𝑏𝐽)) → (𝐵𝑏) ∈ 𝑀)
71 simpl 472 . . . . . . . 8 ((𝜑 ∧ (𝑎𝐽𝑏𝐽)) → 𝜑)
72 uneq1 3722 . . . . . . . . . . . 12 (𝑥 = (𝐵𝑎) → (𝑥𝑦) = ((𝐵𝑎) ∪ 𝑦))
7372eleq1d 2672 . . . . . . . . . . 11 (𝑥 = (𝐵𝑎) → ((𝑥𝑦) ∈ 𝑀 ↔ ((𝐵𝑎) ∪ 𝑦) ∈ 𝑀))
7473imbi2d 329 . . . . . . . . . 10 (𝑥 = (𝐵𝑎) → ((𝜑 → (𝑥𝑦) ∈ 𝑀) ↔ (𝜑 → ((𝐵𝑎) ∪ 𝑦) ∈ 𝑀)))
75 uneq2 3723 . . . . . . . . . . . 12 (𝑦 = (𝐵𝑏) → ((𝐵𝑎) ∪ 𝑦) = ((𝐵𝑎) ∪ (𝐵𝑏)))
7675eleq1d 2672 . . . . . . . . . . 11 (𝑦 = (𝐵𝑏) → (((𝐵𝑎) ∪ 𝑦) ∈ 𝑀 ↔ ((𝐵𝑎) ∪ (𝐵𝑏)) ∈ 𝑀))
7776imbi2d 329 . . . . . . . . . 10 (𝑦 = (𝐵𝑏) → ((𝜑 → ((𝐵𝑎) ∪ 𝑦) ∈ 𝑀) ↔ (𝜑 → ((𝐵𝑎) ∪ (𝐵𝑏)) ∈ 𝑀)))
78 mretopd.u . . . . . . . . . . . 12 ((𝜑𝑥𝑀𝑦𝑀) → (𝑥𝑦) ∈ 𝑀)
79783expb 1258 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝑀𝑦𝑀)) → (𝑥𝑦) ∈ 𝑀)
8079expcom 450 . . . . . . . . . 10 ((𝑥𝑀𝑦𝑀) → (𝜑 → (𝑥𝑦) ∈ 𝑀))
8174, 77, 80vtocl2ga 3247 . . . . . . . . 9 (((𝐵𝑎) ∈ 𝑀 ∧ (𝐵𝑏) ∈ 𝑀) → (𝜑 → ((𝐵𝑎) ∪ (𝐵𝑏)) ∈ 𝑀))
8281imp 444 . . . . . . . 8 ((((𝐵𝑎) ∈ 𝑀 ∧ (𝐵𝑏) ∈ 𝑀) ∧ 𝜑) → ((𝐵𝑎) ∪ (𝐵𝑏)) ∈ 𝑀)
8369, 70, 71, 82syl21anc 1317 . . . . . . 7 ((𝜑 ∧ (𝑎𝐽𝑏𝐽)) → ((𝐵𝑎) ∪ (𝐵𝑏)) ∈ 𝑀)
8467, 83syl5eqel 2692 . . . . . 6 ((𝜑 ∧ (𝑎𝐽𝑏𝐽)) → (𝐵 ∖ (𝑎𝑏)) ∈ 𝑀)
85 difeq2 3684 . . . . . . . 8 (𝑧 = (𝑎𝑏) → (𝐵𝑧) = (𝐵 ∖ (𝑎𝑏)))
8685eleq1d 2672 . . . . . . 7 (𝑧 = (𝑎𝑏) → ((𝐵𝑧) ∈ 𝑀 ↔ (𝐵 ∖ (𝑎𝑏)) ∈ 𝑀))
8786, 5elrab2 3333 . . . . . 6 ((𝑎𝑏) ∈ 𝐽 ↔ ((𝑎𝑏) ∈ 𝒫 𝐵 ∧ (𝐵 ∖ (𝑎𝑏)) ∈ 𝑀))
8866, 84, 87sylanbrc 695 . . . . 5 ((𝜑 ∧ (𝑎𝐽𝑏𝐽)) → (𝑎𝑏) ∈ 𝐽)
8988ralrimivva 2954 . . . 4 (𝜑 → ∀𝑎𝐽𝑏𝐽 (𝑎𝑏) ∈ 𝐽)
90 pwexg 4776 . . . . . . 7 (𝐵𝑀 → 𝒫 𝐵 ∈ V)
9144, 90syl 17 . . . . . 6 (𝜑 → 𝒫 𝐵 ∈ V)
925, 91rabexd 4741 . . . . 5 (𝜑𝐽 ∈ V)
93 istopg 20525 . . . . 5 (𝐽 ∈ V → (𝐽 ∈ Top ↔ (∀𝑎(𝑎𝐽 𝑎𝐽) ∧ ∀𝑎𝐽𝑏𝐽 (𝑎𝑏) ∈ 𝐽)))
9492, 93syl 17 . . . 4 (𝜑 → (𝐽 ∈ Top ↔ (∀𝑎(𝑎𝐽 𝑎𝐽) ∧ ∀𝑎𝐽𝑏𝐽 (𝑎𝑏) ∈ 𝐽)))
9554, 89, 94mpbir2and 959 . . 3 (𝜑𝐽 ∈ Top)
967unissi 4397 . . . . . 6 𝐽 𝒫 𝐵
97 unipw 4845 . . . . . 6 𝒫 𝐵 = 𝐵
9896, 97sseqtri 3600 . . . . 5 𝐽𝐵
99 pwidg 4121 . . . . . . 7 (𝐵𝑀𝐵 ∈ 𝒫 𝐵)
10044, 99syl 17 . . . . . 6 (𝜑𝐵 ∈ 𝒫 𝐵)
101 difid 3902 . . . . . . 7 (𝐵𝐵) = ∅
102 mretopd.z . . . . . . 7 (𝜑 → ∅ ∈ 𝑀)
103101, 102syl5eqel 2692 . . . . . 6 (𝜑 → (𝐵𝐵) ∈ 𝑀)
104 difeq2 3684 . . . . . . . 8 (𝑧 = 𝐵 → (𝐵𝑧) = (𝐵𝐵))
105104eleq1d 2672 . . . . . . 7 (𝑧 = 𝐵 → ((𝐵𝑧) ∈ 𝑀 ↔ (𝐵𝐵) ∈ 𝑀))
106105, 5elrab2 3333 . . . . . 6 (𝐵𝐽 ↔ (𝐵 ∈ 𝒫 𝐵 ∧ (𝐵𝐵) ∈ 𝑀))
107100, 103, 106sylanbrc 695 . . . . 5 (𝜑𝐵𝐽)
108 unissel 4404 . . . . 5 (( 𝐽𝐵𝐵𝐽) → 𝐽 = 𝐵)
10998, 107, 108sylancr 694 . . . 4 (𝜑 𝐽 = 𝐵)
110109eqcomd 2616 . . 3 (𝜑𝐵 = 𝐽)
111 istopon 20540 . . 3 (𝐽 ∈ (TopOn‘𝐵) ↔ (𝐽 ∈ Top ∧ 𝐵 = 𝐽))
11295, 110, 111sylanbrc 695 . 2 (𝜑𝐽 ∈ (TopOn‘𝐵))
113 eqid 2610 . . . . 5 𝐽 = 𝐽
114113cldval 20637 . . . 4 (𝐽 ∈ Top → (Clsd‘𝐽) = {𝑥 ∈ 𝒫 𝐽 ∣ ( 𝐽𝑥) ∈ 𝐽})
11595, 114syl 17 . . 3 (𝜑 → (Clsd‘𝐽) = {𝑥 ∈ 𝒫 𝐽 ∣ ( 𝐽𝑥) ∈ 𝐽})
116109pweqd 4113 . . . 4 (𝜑 → 𝒫 𝐽 = 𝒫 𝐵)
117109difeq1d 3689 . . . . 5 (𝜑 → ( 𝐽𝑥) = (𝐵𝑥))
118117eleq1d 2672 . . . 4 (𝜑 → (( 𝐽𝑥) ∈ 𝐽 ↔ (𝐵𝑥) ∈ 𝐽))
119116, 118rabeqbidv 3168 . . 3 (𝜑 → {𝑥 ∈ 𝒫 𝐽 ∣ ( 𝐽𝑥) ∈ 𝐽} = {𝑥 ∈ 𝒫 𝐵 ∣ (𝐵𝑥) ∈ 𝐽})
1205eleq2i 2680 . . . . . . 7 ((𝐵𝑥) ∈ 𝐽 ↔ (𝐵𝑥) ∈ {𝑧 ∈ 𝒫 𝐵 ∣ (𝐵𝑧) ∈ 𝑀})
121 difss 3699 . . . . . . . . . 10 (𝐵𝑥) ⊆ 𝐵
122 elpw2g 4754 . . . . . . . . . . 11 (𝐵𝑀 → ((𝐵𝑥) ∈ 𝒫 𝐵 ↔ (𝐵𝑥) ⊆ 𝐵))
12344, 122syl 17 . . . . . . . . . 10 (𝜑 → ((𝐵𝑥) ∈ 𝒫 𝐵 ↔ (𝐵𝑥) ⊆ 𝐵))
124121, 123mpbiri 247 . . . . . . . . 9 (𝜑 → (𝐵𝑥) ∈ 𝒫 𝐵)
125 difeq2 3684 . . . . . . . . . . 11 (𝑧 = (𝐵𝑥) → (𝐵𝑧) = (𝐵 ∖ (𝐵𝑥)))
126125eleq1d 2672 . . . . . . . . . 10 (𝑧 = (𝐵𝑥) → ((𝐵𝑧) ∈ 𝑀 ↔ (𝐵 ∖ (𝐵𝑥)) ∈ 𝑀))
127126elrab3 3332 . . . . . . . . 9 ((𝐵𝑥) ∈ 𝒫 𝐵 → ((𝐵𝑥) ∈ {𝑧 ∈ 𝒫 𝐵 ∣ (𝐵𝑧) ∈ 𝑀} ↔ (𝐵 ∖ (𝐵𝑥)) ∈ 𝑀))
128124, 127syl 17 . . . . . . . 8 (𝜑 → ((𝐵𝑥) ∈ {𝑧 ∈ 𝒫 𝐵 ∣ (𝐵𝑧) ∈ 𝑀} ↔ (𝐵 ∖ (𝐵𝑥)) ∈ 𝑀))
129128adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ 𝒫 𝐵) → ((𝐵𝑥) ∈ {𝑧 ∈ 𝒫 𝐵 ∣ (𝐵𝑧) ∈ 𝑀} ↔ (𝐵 ∖ (𝐵𝑥)) ∈ 𝑀))
130120, 129syl5bb 271 . . . . . 6 ((𝜑𝑥 ∈ 𝒫 𝐵) → ((𝐵𝑥) ∈ 𝐽 ↔ (𝐵 ∖ (𝐵𝑥)) ∈ 𝑀))
131 elpwi 4117 . . . . . . . . 9 (𝑥 ∈ 𝒫 𝐵𝑥𝐵)
132 dfss4 3820 . . . . . . . . 9 (𝑥𝐵 ↔ (𝐵 ∖ (𝐵𝑥)) = 𝑥)
133131, 132sylib 207 . . . . . . . 8 (𝑥 ∈ 𝒫 𝐵 → (𝐵 ∖ (𝐵𝑥)) = 𝑥)
134133adantl 481 . . . . . . 7 ((𝜑𝑥 ∈ 𝒫 𝐵) → (𝐵 ∖ (𝐵𝑥)) = 𝑥)
135134eleq1d 2672 . . . . . 6 ((𝜑𝑥 ∈ 𝒫 𝐵) → ((𝐵 ∖ (𝐵𝑥)) ∈ 𝑀𝑥𝑀))
136130, 135bitrd 267 . . . . 5 ((𝜑𝑥 ∈ 𝒫 𝐵) → ((𝐵𝑥) ∈ 𝐽𝑥𝑀))
137136rabbidva 3163 . . . 4 (𝜑 → {𝑥 ∈ 𝒫 𝐵 ∣ (𝐵𝑥) ∈ 𝐽} = {𝑥 ∈ 𝒫 𝐵𝑥𝑀})
138 incom 3767 . . . . . 6 (𝑀 ∩ 𝒫 𝐵) = (𝒫 𝐵𝑀)
139 dfin5 3548 . . . . . 6 (𝒫 𝐵𝑀) = {𝑥 ∈ 𝒫 𝐵𝑥𝑀}
140138, 139eqtri 2632 . . . . 5 (𝑀 ∩ 𝒫 𝐵) = {𝑥 ∈ 𝒫 𝐵𝑥𝑀}
141 mresspw 16075 . . . . . . 7 (𝑀 ∈ (Moore‘𝐵) → 𝑀 ⊆ 𝒫 𝐵)
14221, 141syl 17 . . . . . 6 (𝜑𝑀 ⊆ 𝒫 𝐵)
143 df-ss 3554 . . . . . 6 (𝑀 ⊆ 𝒫 𝐵 ↔ (𝑀 ∩ 𝒫 𝐵) = 𝑀)
144142, 143sylib 207 . . . . 5 (𝜑 → (𝑀 ∩ 𝒫 𝐵) = 𝑀)
145140, 144syl5eqr 2658 . . . 4 (𝜑 → {𝑥 ∈ 𝒫 𝐵𝑥𝑀} = 𝑀)
146137, 145eqtrd 2644 . . 3 (𝜑 → {𝑥 ∈ 𝒫 𝐵 ∣ (𝐵𝑥) ∈ 𝐽} = 𝑀)
147115, 119, 1463eqtrrd 2649 . 2 (𝜑𝑀 = (Clsd‘𝐽))
148112, 147jca 553 1 (𝜑 → (𝐽 ∈ (TopOn‘𝐵) ∧ 𝑀 = (Clsd‘𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031  wal 1473   = wceq 1475  wcel 1977  wne 2780  wral 2896  {crab 2900  Vcvv 3173  cdif 3537  cun 3538  cin 3539  wss 3540  c0 3874  𝒫 cpw 4108   cuni 4372   ciun 4455   ciin 4456  cfv 5804  Moorecmre 16065  Topctop 20517  TopOnctopon 20518  Clsdccld 20630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-iota 5768  df-fun 5806  df-fv 5812  df-mre 16069  df-top 20521  df-topon 20523  df-cld 20633
This theorem is referenced by:  iscldtop  20709  istopclsd  36281
  Copyright terms: Public domain W3C validator