Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > flimtopon | Structured version Visualization version GIF version |
Description: Reverse closure for the limit point predicate. (Contributed by Mario Carneiro, 26-Aug-2015.) |
Ref | Expression |
---|---|
flimtopon | ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → (𝐽 ∈ (TopOn‘𝑋) ↔ 𝐹 ∈ (Fil‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | flimtop 21579 | . . 3 ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐽 ∈ Top) | |
2 | istopon 20540 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘𝑋) ↔ (𝐽 ∈ Top ∧ 𝑋 = ∪ 𝐽)) | |
3 | 2 | baib 942 | . . 3 ⊢ (𝐽 ∈ Top → (𝐽 ∈ (TopOn‘𝑋) ↔ 𝑋 = ∪ 𝐽)) |
4 | 1, 3 | syl 17 | . 2 ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → (𝐽 ∈ (TopOn‘𝑋) ↔ 𝑋 = ∪ 𝐽)) |
5 | eqid 2610 | . . . . 5 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
6 | 5 | flimfil 21583 | . . . 4 ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐹 ∈ (Fil‘∪ 𝐽)) |
7 | fveq2 6103 | . . . . 5 ⊢ (𝑋 = ∪ 𝐽 → (Fil‘𝑋) = (Fil‘∪ 𝐽)) | |
8 | 7 | eleq2d 2673 | . . . 4 ⊢ (𝑋 = ∪ 𝐽 → (𝐹 ∈ (Fil‘𝑋) ↔ 𝐹 ∈ (Fil‘∪ 𝐽))) |
9 | 6, 8 | syl5ibrcom 236 | . . 3 ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → (𝑋 = ∪ 𝐽 → 𝐹 ∈ (Fil‘𝑋))) |
10 | filunibas 21495 | . . . . 5 ⊢ (𝐹 ∈ (Fil‘∪ 𝐽) → ∪ 𝐹 = ∪ 𝐽) | |
11 | 6, 10 | syl 17 | . . . 4 ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → ∪ 𝐹 = ∪ 𝐽) |
12 | filunibas 21495 | . . . . 5 ⊢ (𝐹 ∈ (Fil‘𝑋) → ∪ 𝐹 = 𝑋) | |
13 | 12 | eqeq1d 2612 | . . . 4 ⊢ (𝐹 ∈ (Fil‘𝑋) → (∪ 𝐹 = ∪ 𝐽 ↔ 𝑋 = ∪ 𝐽)) |
14 | 11, 13 | syl5ibcom 234 | . . 3 ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → (𝐹 ∈ (Fil‘𝑋) → 𝑋 = ∪ 𝐽)) |
15 | 9, 14 | impbid 201 | . 2 ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → (𝑋 = ∪ 𝐽 ↔ 𝐹 ∈ (Fil‘𝑋))) |
16 | 4, 15 | bitrd 267 | 1 ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → (𝐽 ∈ (TopOn‘𝑋) ↔ 𝐹 ∈ (Fil‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 = wceq 1475 ∈ wcel 1977 ∪ cuni 4372 ‘cfv 5804 (class class class)co 6549 Topctop 20517 TopOnctopon 20518 Filcfil 21459 fLim cflim 21548 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-fbas 19564 df-top 20521 df-topon 20523 df-nei 20712 df-fil 21460 df-flim 21553 |
This theorem is referenced by: fclsfnflim 21641 |
Copyright terms: Public domain | W3C validator |