Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > islinds3 | Structured version Visualization version GIF version |
Description: A subset is linearly independent iff it is a basis of its span. (Contributed by Stefan O'Rear, 25-Feb-2015.) |
Ref | Expression |
---|---|
islinds3.b | ⊢ 𝐵 = (Base‘𝑊) |
islinds3.k | ⊢ 𝐾 = (LSpan‘𝑊) |
islinds3.x | ⊢ 𝑋 = (𝑊 ↾s (𝐾‘𝑌)) |
islinds3.j | ⊢ 𝐽 = (LBasis‘𝑋) |
Ref | Expression |
---|---|
islinds3 | ⊢ (𝑊 ∈ LMod → (𝑌 ∈ (LIndS‘𝑊) ↔ 𝑌 ∈ 𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | islinds3.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑊) | |
2 | 1 | linds1 19968 | . . . 4 ⊢ (𝑌 ∈ (LIndS‘𝑊) → 𝑌 ⊆ 𝐵) |
3 | 2 | a1i 11 | . . 3 ⊢ (𝑊 ∈ LMod → (𝑌 ∈ (LIndS‘𝑊) → 𝑌 ⊆ 𝐵)) |
4 | eqid 2610 | . . . . . . 7 ⊢ (Base‘𝑋) = (Base‘𝑋) | |
5 | 4 | linds1 19968 | . . . . . 6 ⊢ (𝑌 ∈ (LIndS‘𝑋) → 𝑌 ⊆ (Base‘𝑋)) |
6 | islinds3.x | . . . . . . 7 ⊢ 𝑋 = (𝑊 ↾s (𝐾‘𝑌)) | |
7 | 6, 1 | ressbasss 15759 | . . . . . 6 ⊢ (Base‘𝑋) ⊆ 𝐵 |
8 | 5, 7 | syl6ss 3580 | . . . . 5 ⊢ (𝑌 ∈ (LIndS‘𝑋) → 𝑌 ⊆ 𝐵) |
9 | 8 | adantr 480 | . . . 4 ⊢ ((𝑌 ∈ (LIndS‘𝑋) ∧ ((LSpan‘𝑋)‘𝑌) = (Base‘𝑋)) → 𝑌 ⊆ 𝐵) |
10 | 9 | a1i 11 | . . 3 ⊢ (𝑊 ∈ LMod → ((𝑌 ∈ (LIndS‘𝑋) ∧ ((LSpan‘𝑋)‘𝑌) = (Base‘𝑋)) → 𝑌 ⊆ 𝐵)) |
11 | simpl 472 | . . . . . . . 8 ⊢ ((𝑊 ∈ LMod ∧ 𝑌 ⊆ 𝐵) → 𝑊 ∈ LMod) | |
12 | eqid 2610 | . . . . . . . . 9 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
13 | islinds3.k | . . . . . . . . 9 ⊢ 𝐾 = (LSpan‘𝑊) | |
14 | 1, 12, 13 | lspcl 18797 | . . . . . . . 8 ⊢ ((𝑊 ∈ LMod ∧ 𝑌 ⊆ 𝐵) → (𝐾‘𝑌) ∈ (LSubSp‘𝑊)) |
15 | 1, 13 | lspssid 18806 | . . . . . . . 8 ⊢ ((𝑊 ∈ LMod ∧ 𝑌 ⊆ 𝐵) → 𝑌 ⊆ (𝐾‘𝑌)) |
16 | eqid 2610 | . . . . . . . . 9 ⊢ (LSpan‘𝑋) = (LSpan‘𝑋) | |
17 | 6, 13, 16, 12 | lsslsp 18836 | . . . . . . . 8 ⊢ ((𝑊 ∈ LMod ∧ (𝐾‘𝑌) ∈ (LSubSp‘𝑊) ∧ 𝑌 ⊆ (𝐾‘𝑌)) → (𝐾‘𝑌) = ((LSpan‘𝑋)‘𝑌)) |
18 | 11, 14, 15, 17 | syl3anc 1318 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ 𝑌 ⊆ 𝐵) → (𝐾‘𝑌) = ((LSpan‘𝑋)‘𝑌)) |
19 | 1, 13 | lspssv 18804 | . . . . . . . 8 ⊢ ((𝑊 ∈ LMod ∧ 𝑌 ⊆ 𝐵) → (𝐾‘𝑌) ⊆ 𝐵) |
20 | 6, 1 | ressbas2 15758 | . . . . . . . 8 ⊢ ((𝐾‘𝑌) ⊆ 𝐵 → (𝐾‘𝑌) = (Base‘𝑋)) |
21 | 19, 20 | syl 17 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ 𝑌 ⊆ 𝐵) → (𝐾‘𝑌) = (Base‘𝑋)) |
22 | 18, 21 | eqtr3d 2646 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑌 ⊆ 𝐵) → ((LSpan‘𝑋)‘𝑌) = (Base‘𝑋)) |
23 | 22 | biantrud 527 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑌 ⊆ 𝐵) → (𝑌 ∈ (LIndS‘𝑊) ↔ (𝑌 ∈ (LIndS‘𝑊) ∧ ((LSpan‘𝑋)‘𝑌) = (Base‘𝑋)))) |
24 | 12, 6 | lsslinds 19989 | . . . . . . . 8 ⊢ ((𝑊 ∈ LMod ∧ (𝐾‘𝑌) ∈ (LSubSp‘𝑊) ∧ 𝑌 ⊆ (𝐾‘𝑌)) → (𝑌 ∈ (LIndS‘𝑋) ↔ 𝑌 ∈ (LIndS‘𝑊))) |
25 | 11, 14, 15, 24 | syl3anc 1318 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ 𝑌 ⊆ 𝐵) → (𝑌 ∈ (LIndS‘𝑋) ↔ 𝑌 ∈ (LIndS‘𝑊))) |
26 | 25 | bicomd 212 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑌 ⊆ 𝐵) → (𝑌 ∈ (LIndS‘𝑊) ↔ 𝑌 ∈ (LIndS‘𝑋))) |
27 | 26 | anbi1d 737 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑌 ⊆ 𝐵) → ((𝑌 ∈ (LIndS‘𝑊) ∧ ((LSpan‘𝑋)‘𝑌) = (Base‘𝑋)) ↔ (𝑌 ∈ (LIndS‘𝑋) ∧ ((LSpan‘𝑋)‘𝑌) = (Base‘𝑋)))) |
28 | 23, 27 | bitrd 267 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑌 ⊆ 𝐵) → (𝑌 ∈ (LIndS‘𝑊) ↔ (𝑌 ∈ (LIndS‘𝑋) ∧ ((LSpan‘𝑋)‘𝑌) = (Base‘𝑋)))) |
29 | 28 | ex 449 | . . 3 ⊢ (𝑊 ∈ LMod → (𝑌 ⊆ 𝐵 → (𝑌 ∈ (LIndS‘𝑊) ↔ (𝑌 ∈ (LIndS‘𝑋) ∧ ((LSpan‘𝑋)‘𝑌) = (Base‘𝑋))))) |
30 | 3, 10, 29 | pm5.21ndd 368 | . 2 ⊢ (𝑊 ∈ LMod → (𝑌 ∈ (LIndS‘𝑊) ↔ (𝑌 ∈ (LIndS‘𝑋) ∧ ((LSpan‘𝑋)‘𝑌) = (Base‘𝑋)))) |
31 | islinds3.j | . . 3 ⊢ 𝐽 = (LBasis‘𝑋) | |
32 | 4, 31, 16 | islbs4 19990 | . 2 ⊢ (𝑌 ∈ 𝐽 ↔ (𝑌 ∈ (LIndS‘𝑋) ∧ ((LSpan‘𝑋)‘𝑌) = (Base‘𝑋))) |
33 | 30, 32 | syl6bbr 277 | 1 ⊢ (𝑊 ∈ LMod → (𝑌 ∈ (LIndS‘𝑊) ↔ 𝑌 ∈ 𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∧ wa 383 = wceq 1475 ∈ wcel 1977 ⊆ wss 3540 ‘cfv 5804 (class class class)co 6549 Basecbs 15695 ↾s cress 15696 LModclmod 18686 LSubSpclss 18753 LSpanclspn 18792 LBasisclbs 18895 LIndSclinds 19963 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-int 4411 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-1st 7059 df-2nd 7060 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-er 7629 df-en 7842 df-dom 7843 df-sdom 7844 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-nn 10898 df-2 10956 df-3 10957 df-4 10958 df-5 10959 df-6 10960 df-ndx 15698 df-slot 15699 df-base 15700 df-sets 15701 df-ress 15702 df-plusg 15781 df-sca 15784 df-vsca 15785 df-0g 15925 df-mgm 17065 df-sgrp 17107 df-mnd 17118 df-grp 17248 df-minusg 17249 df-sbg 17250 df-subg 17414 df-mgp 18313 df-ur 18325 df-ring 18372 df-lmod 18688 df-lss 18754 df-lsp 18793 df-lbs 18896 df-lindf 19964 df-linds 19965 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |