Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  islinds4 Structured version   Visualization version   GIF version

Theorem islinds4 19993
 Description: A set is independent in a vector space iff it is a subset of some basis. (AC equivalent) (Contributed by Stefan O'Rear, 24-Feb-2015.)
Hypothesis
Ref Expression
islinds4.j 𝐽 = (LBasis‘𝑊)
Assertion
Ref Expression
islinds4 (𝑊 ∈ LVec → (𝑌 ∈ (LIndS‘𝑊) ↔ ∃𝑏𝐽 𝑌𝑏))
Distinct variable groups:   𝐽,𝑏   𝑊,𝑏   𝑌,𝑏

Proof of Theorem islinds4
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpl 472 . . . 4 ((𝑊 ∈ LVec ∧ 𝑌 ∈ (LIndS‘𝑊)) → 𝑊 ∈ LVec)
2 eqid 2610 . . . . . 6 (Base‘𝑊) = (Base‘𝑊)
32linds1 19968 . . . . 5 (𝑌 ∈ (LIndS‘𝑊) → 𝑌 ⊆ (Base‘𝑊))
43adantl 481 . . . 4 ((𝑊 ∈ LVec ∧ 𝑌 ∈ (LIndS‘𝑊)) → 𝑌 ⊆ (Base‘𝑊))
5 lveclmod 18927 . . . . . . 7 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
65ad2antrr 758 . . . . . 6 (((𝑊 ∈ LVec ∧ 𝑌 ∈ (LIndS‘𝑊)) ∧ 𝑥𝑌) → 𝑊 ∈ LMod)
7 eqid 2610 . . . . . . . . 9 (Scalar‘𝑊) = (Scalar‘𝑊)
87lvecdrng 18926 . . . . . . . 8 (𝑊 ∈ LVec → (Scalar‘𝑊) ∈ DivRing)
9 drngnzr 19083 . . . . . . . 8 ((Scalar‘𝑊) ∈ DivRing → (Scalar‘𝑊) ∈ NzRing)
108, 9syl 17 . . . . . . 7 (𝑊 ∈ LVec → (Scalar‘𝑊) ∈ NzRing)
1110ad2antrr 758 . . . . . 6 (((𝑊 ∈ LVec ∧ 𝑌 ∈ (LIndS‘𝑊)) ∧ 𝑥𝑌) → (Scalar‘𝑊) ∈ NzRing)
12 simplr 788 . . . . . 6 (((𝑊 ∈ LVec ∧ 𝑌 ∈ (LIndS‘𝑊)) ∧ 𝑥𝑌) → 𝑌 ∈ (LIndS‘𝑊))
13 simpr 476 . . . . . 6 (((𝑊 ∈ LVec ∧ 𝑌 ∈ (LIndS‘𝑊)) ∧ 𝑥𝑌) → 𝑥𝑌)
14 eqid 2610 . . . . . . 7 (LSpan‘𝑊) = (LSpan‘𝑊)
1514, 7lindsind2 19977 . . . . . 6 (((𝑊 ∈ LMod ∧ (Scalar‘𝑊) ∈ NzRing) ∧ 𝑌 ∈ (LIndS‘𝑊) ∧ 𝑥𝑌) → ¬ 𝑥 ∈ ((LSpan‘𝑊)‘(𝑌 ∖ {𝑥})))
166, 11, 12, 13, 15syl211anc 1324 . . . . 5 (((𝑊 ∈ LVec ∧ 𝑌 ∈ (LIndS‘𝑊)) ∧ 𝑥𝑌) → ¬ 𝑥 ∈ ((LSpan‘𝑊)‘(𝑌 ∖ {𝑥})))
1716ralrimiva 2949 . . . 4 ((𝑊 ∈ LVec ∧ 𝑌 ∈ (LIndS‘𝑊)) → ∀𝑥𝑌 ¬ 𝑥 ∈ ((LSpan‘𝑊)‘(𝑌 ∖ {𝑥})))
18 islinds4.j . . . . 5 𝐽 = (LBasis‘𝑊)
1918, 2, 14lbsext 18984 . . . 4 ((𝑊 ∈ LVec ∧ 𝑌 ⊆ (Base‘𝑊) ∧ ∀𝑥𝑌 ¬ 𝑥 ∈ ((LSpan‘𝑊)‘(𝑌 ∖ {𝑥}))) → ∃𝑏𝐽 𝑌𝑏)
201, 4, 17, 19syl3anc 1318 . . 3 ((𝑊 ∈ LVec ∧ 𝑌 ∈ (LIndS‘𝑊)) → ∃𝑏𝐽 𝑌𝑏)
2120ex 449 . 2 (𝑊 ∈ LVec → (𝑌 ∈ (LIndS‘𝑊) → ∃𝑏𝐽 𝑌𝑏))
225ad2antrr 758 . . . . 5 (((𝑊 ∈ LVec ∧ 𝑏𝐽) ∧ 𝑌𝑏) → 𝑊 ∈ LMod)
2318lbslinds 19991 . . . . . . 7 𝐽 ⊆ (LIndS‘𝑊)
2423sseli 3564 . . . . . 6 (𝑏𝐽𝑏 ∈ (LIndS‘𝑊))
2524ad2antlr 759 . . . . 5 (((𝑊 ∈ LVec ∧ 𝑏𝐽) ∧ 𝑌𝑏) → 𝑏 ∈ (LIndS‘𝑊))
26 simpr 476 . . . . 5 (((𝑊 ∈ LVec ∧ 𝑏𝐽) ∧ 𝑌𝑏) → 𝑌𝑏)
27 lindsss 19982 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑏 ∈ (LIndS‘𝑊) ∧ 𝑌𝑏) → 𝑌 ∈ (LIndS‘𝑊))
2822, 25, 26, 27syl3anc 1318 . . . 4 (((𝑊 ∈ LVec ∧ 𝑏𝐽) ∧ 𝑌𝑏) → 𝑌 ∈ (LIndS‘𝑊))
2928ex 449 . . 3 ((𝑊 ∈ LVec ∧ 𝑏𝐽) → (𝑌𝑏𝑌 ∈ (LIndS‘𝑊)))
3029rexlimdva 3013 . 2 (𝑊 ∈ LVec → (∃𝑏𝐽 𝑌𝑏𝑌 ∈ (LIndS‘𝑊)))
3121, 30impbid 201 1 (𝑊 ∈ LVec → (𝑌 ∈ (LIndS‘𝑊) ↔ ∃𝑏𝐽 𝑌𝑏))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 195   ∧ wa 383   = wceq 1475   ∈ wcel 1977  ∀wral 2896  ∃wrex 2897   ∖ cdif 3537   ⊆ wss 3540  {csn 4125  ‘cfv 5804  Basecbs 15695  Scalarcsca 15771  DivRingcdr 18570  LModclmod 18686  LSpanclspn 18792  LBasisclbs 18895  LVecclvec 18923  NzRingcnzr 19078  LIndSclinds 19963 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-ac2 9168  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-rpss 6835  df-om 6958  df-1st 7059  df-2nd 7060  df-tpos 7239  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-ac 8822  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-minusg 17249  df-sbg 17250  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-oppr 18446  df-dvdsr 18464  df-unit 18465  df-invr 18495  df-drng 18572  df-lmod 18688  df-lss 18754  df-lsp 18793  df-lbs 18896  df-lvec 18924  df-nzr 19079  df-lindf 19964  df-linds 19965 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator