Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islindeps2 Structured version   Visualization version   GIF version

Theorem islindeps2 42066
 Description: Conditions for being a linearly dependent subset of a (left) module over a nonzero ring. (Contributed by AV, 29-Apr-2019.) (Proof shortened by AV, 30-Jul-2019.)
Hypotheses
Ref Expression
islindeps2.b 𝐵 = (Base‘𝑀)
islindeps2.z 𝑍 = (0g𝑀)
islindeps2.r 𝑅 = (Scalar‘𝑀)
islindeps2.e 𝐸 = (Base‘𝑅)
islindeps2.0 0 = (0g𝑅)
Assertion
Ref Expression
islindeps2 ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) → (∃𝑠𝑆𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠) → 𝑆 linDepS 𝑀))
Distinct variable groups:   𝐵,𝑓,𝑠   𝑓,𝐸,𝑠   𝑓,𝑀,𝑠   𝑅,𝑓,𝑠   𝑆,𝑓,𝑠   𝑓,𝑍,𝑠   0 ,𝑓,𝑠

Proof of Theorem islindeps2
Dummy variables 𝑔 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . . . . . . . . . . . 13 ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) → (𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵))
213adant3 1074 . . . . . . . . . . . 12 ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) → (𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵))
32ad3antrrr 762 . . . . . . . . . . 11 (((((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) ∧ 𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠}))) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) → (𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵))
4 nzrring 19082 . . . . . . . . . . . . . . 15 (𝑅 ∈ NzRing → 𝑅 ∈ Ring)
5 islindeps2.e . . . . . . . . . . . . . . . 16 𝐸 = (Base‘𝑅)
6 eqid 2610 . . . . . . . . . . . . . . . 16 (1r𝑅) = (1r𝑅)
75, 6ringidcl 18391 . . . . . . . . . . . . . . 15 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐸)
84, 7syl 17 . . . . . . . . . . . . . 14 (𝑅 ∈ NzRing → (1r𝑅) ∈ 𝐸)
983ad2ant3 1077 . . . . . . . . . . . . 13 ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) → (1r𝑅) ∈ 𝐸)
109ad3antrrr 762 . . . . . . . . . . . 12 (((((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) ∧ 𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠}))) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) → (1r𝑅) ∈ 𝐸)
11 simpllr 795 . . . . . . . . . . . 12 (((((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) ∧ 𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠}))) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) → 𝑠𝑆)
12 simplr 788 . . . . . . . . . . . 12 (((((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) ∧ 𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠}))) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) → 𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠})))
1310, 11, 123jca 1235 . . . . . . . . . . 11 (((((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) ∧ 𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠}))) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) → ((1r𝑅) ∈ 𝐸𝑠𝑆𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠}))))
14 simprl 790 . . . . . . . . . . 11 (((((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) ∧ 𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠}))) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) → 𝑓 finSupp 0 )
15 islindeps2.b . . . . . . . . . . . 12 𝐵 = (Base‘𝑀)
16 islindeps2.r . . . . . . . . . . . 12 𝑅 = (Scalar‘𝑀)
17 islindeps2.0 . . . . . . . . . . . 12 0 = (0g𝑅)
18 islindeps2.z . . . . . . . . . . . 12 𝑍 = (0g𝑀)
19 eqid 2610 . . . . . . . . . . . 12 (invg𝑅) = (invg𝑅)
20 eqid 2610 . . . . . . . . . . . 12 (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧))) = (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧)))
2115, 16, 5, 17, 18, 19, 20lincext2 42038 . . . . . . . . . . 11 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ ((1r𝑅) ∈ 𝐸𝑠𝑆𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠}))) ∧ 𝑓 finSupp 0 ) → (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧))) finSupp 0 )
223, 13, 14, 21syl3anc 1318 . . . . . . . . . 10 (((((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) ∧ 𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠}))) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) → (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧))) finSupp 0 )
23 simpl1 1057 . . . . . . . . . . . . . 14 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) → 𝑀 ∈ LMod)
24 elelpwi 4119 . . . . . . . . . . . . . . . . 17 ((𝑠𝑆𝑆 ∈ 𝒫 𝐵) → 𝑠𝐵)
2524expcom 450 . . . . . . . . . . . . . . . 16 (𝑆 ∈ 𝒫 𝐵 → (𝑠𝑆𝑠𝐵))
26253ad2ant2 1076 . . . . . . . . . . . . . . 15 ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) → (𝑠𝑆𝑠𝐵))
2726imp 444 . . . . . . . . . . . . . 14 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) → 𝑠𝐵)
28 eqid 2610 . . . . . . . . . . . . . . 15 ( ·𝑠𝑀) = ( ·𝑠𝑀)
2915, 16, 28, 6lmodvs1 18714 . . . . . . . . . . . . . 14 ((𝑀 ∈ LMod ∧ 𝑠𝐵) → ((1r𝑅)( ·𝑠𝑀)𝑠) = 𝑠)
3023, 27, 29syl2anc 691 . . . . . . . . . . . . 13 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) → ((1r𝑅)( ·𝑠𝑀)𝑠) = 𝑠)
3130adantr 480 . . . . . . . . . . . 12 ((((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) ∧ 𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠}))) → ((1r𝑅)( ·𝑠𝑀)𝑠) = 𝑠)
32 id 22 . . . . . . . . . . . . . 14 ((𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠 → (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)
3332eqcomd 2616 . . . . . . . . . . . . 13 ((𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠𝑠 = (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})))
3433adantl 481 . . . . . . . . . . . 12 ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠) → 𝑠 = (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})))
3531, 34sylan9eq 2664 . . . . . . . . . . 11 (((((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) ∧ 𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠}))) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) → ((1r𝑅)( ·𝑠𝑀)𝑠) = (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})))
3615, 16, 5, 17, 18, 19, 20lincext3 42039 . . . . . . . . . . 11 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ ((1r𝑅) ∈ 𝐸𝑠𝑆𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠}))) ∧ (𝑓 finSupp 0 ∧ ((1r𝑅)( ·𝑠𝑀)𝑠) = (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})))) → ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧)))( linC ‘𝑀)𝑆) = 𝑍)
373, 13, 14, 35, 36syl112anc 1322 . . . . . . . . . 10 (((((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) ∧ 𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠}))) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) → ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧)))( linC ‘𝑀)𝑆) = 𝑍)
3822, 37jca 553 . . . . . . . . 9 (((((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) ∧ 𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠}))) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) → ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧))) finSupp 0 ∧ ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧)))( linC ‘𝑀)𝑆) = 𝑍))
39 eqidd 2611 . . . . . . . . . . . . 13 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) → (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧))) = (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧))))
40 iftrue 4042 . . . . . . . . . . . . . 14 (𝑧 = 𝑠 → if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧)) = ((invg𝑅)‘(1r𝑅)))
4140adantl 481 . . . . . . . . . . . . 13 ((((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) ∧ 𝑧 = 𝑠) → if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧)) = ((invg𝑅)‘(1r𝑅)))
42 simpr 476 . . . . . . . . . . . . 13 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) → 𝑠𝑆)
43 fvex 6113 . . . . . . . . . . . . . 14 ((invg𝑅)‘(1r𝑅)) ∈ V
4443a1i 11 . . . . . . . . . . . . 13 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) → ((invg𝑅)‘(1r𝑅)) ∈ V)
4539, 41, 42, 44fvmptd 6197 . . . . . . . . . . . 12 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) → ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧)))‘𝑠) = ((invg𝑅)‘(1r𝑅)))
46 nzrneg1ne0 41659 . . . . . . . . . . . . . . 15 (𝑅 ∈ NzRing → ((invg𝑅)‘(1r𝑅)) ≠ (0g𝑅))
4717a1i 11 . . . . . . . . . . . . . . 15 (𝑅 ∈ NzRing → 0 = (0g𝑅))
4846, 47neeqtrrd 2856 . . . . . . . . . . . . . 14 (𝑅 ∈ NzRing → ((invg𝑅)‘(1r𝑅)) ≠ 0 )
49483ad2ant3 1077 . . . . . . . . . . . . 13 ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) → ((invg𝑅)‘(1r𝑅)) ≠ 0 )
5049adantr 480 . . . . . . . . . . . 12 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) → ((invg𝑅)‘(1r𝑅)) ≠ 0 )
5145, 50eqnetrd 2849 . . . . . . . . . . 11 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) → ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧)))‘𝑠) ≠ 0 )
5251adantr 480 . . . . . . . . . 10 ((((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) ∧ 𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠}))) → ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧)))‘𝑠) ≠ 0 )
5352adantr 480 . . . . . . . . 9 (((((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) ∧ 𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠}))) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) → ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧)))‘𝑠) ≠ 0 )
5415, 16, 5, 17, 18, 19, 20lincext1 42037 . . . . . . . . . . 11 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ ((1r𝑅) ∈ 𝐸𝑠𝑆𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠})))) → (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧))) ∈ (𝐸𝑚 𝑆))
553, 13, 54syl2anc 691 . . . . . . . . . 10 (((((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) ∧ 𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠}))) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) → (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧))) ∈ (𝐸𝑚 𝑆))
56 breq1 4586 . . . . . . . . . . . . 13 (𝑔 = (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧))) → (𝑔 finSupp 0 ↔ (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧))) finSupp 0 ))
57 oveq1 6556 . . . . . . . . . . . . . 14 (𝑔 = (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧))) → (𝑔( linC ‘𝑀)𝑆) = ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧)))( linC ‘𝑀)𝑆))
5857eqeq1d 2612 . . . . . . . . . . . . 13 (𝑔 = (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧))) → ((𝑔( linC ‘𝑀)𝑆) = 𝑍 ↔ ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧)))( linC ‘𝑀)𝑆) = 𝑍))
5956, 58anbi12d 743 . . . . . . . . . . . 12 (𝑔 = (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧))) → ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ↔ ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧))) finSupp 0 ∧ ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧)))( linC ‘𝑀)𝑆) = 𝑍)))
60 fveq1 6102 . . . . . . . . . . . . 13 (𝑔 = (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧))) → (𝑔𝑠) = ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧)))‘𝑠))
6160neeq1d 2841 . . . . . . . . . . . 12 (𝑔 = (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧))) → ((𝑔𝑠) ≠ 0 ↔ ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧)))‘𝑠) ≠ 0 ))
6259, 61anbi12d 743 . . . . . . . . . . 11 (𝑔 = (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧))) → (((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 ) ↔ (((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧))) finSupp 0 ∧ ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧)))( linC ‘𝑀)𝑆) = 𝑍) ∧ ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧)))‘𝑠) ≠ 0 )))
6362adantl 481 . . . . . . . . . 10 ((((((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) ∧ 𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠}))) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) ∧ 𝑔 = (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧)))) → (((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 ) ↔ (((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧))) finSupp 0 ∧ ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧)))( linC ‘𝑀)𝑆) = 𝑍) ∧ ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧)))‘𝑠) ≠ 0 )))
6455, 63rspcedv 3286 . . . . . . . . 9 (((((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) ∧ 𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠}))) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) → ((((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧))) finSupp 0 ∧ ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧)))( linC ‘𝑀)𝑆) = 𝑍) ∧ ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧)))‘𝑠) ≠ 0 ) → ∃𝑔 ∈ (𝐸𝑚 𝑆)((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 )))
6538, 53, 64mp2and 711 . . . . . . . 8 (((((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) ∧ 𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠}))) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) → ∃𝑔 ∈ (𝐸𝑚 𝑆)((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 ))
6665exp31 628 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) → (𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠})) → ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠) → ∃𝑔 ∈ (𝐸𝑚 𝑆)((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 ))))
6766rexlimdv 3012 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) → (∃𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠) → ∃𝑔 ∈ (𝐸𝑚 𝑆)((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 )))
6867reximdva 3000 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) → (∃𝑠𝑆𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠) → ∃𝑠𝑆𝑔 ∈ (𝐸𝑚 𝑆)((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 )))
6968imp 444 . . . 4 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ ∃𝑠𝑆𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) → ∃𝑠𝑆𝑔 ∈ (𝐸𝑚 𝑆)((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 ))
70 df-3an 1033 . . . . . . 7 ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍 ∧ ∃𝑠𝑆 (𝑔𝑠) ≠ 0 ) ↔ ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ ∃𝑠𝑆 (𝑔𝑠) ≠ 0 ))
71 r19.42v 3073 . . . . . . 7 (∃𝑠𝑆 ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 ) ↔ ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ ∃𝑠𝑆 (𝑔𝑠) ≠ 0 ))
7270, 71bitr4i 266 . . . . . 6 ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍 ∧ ∃𝑠𝑆 (𝑔𝑠) ≠ 0 ) ↔ ∃𝑠𝑆 ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 ))
7372rexbii 3023 . . . . 5 (∃𝑔 ∈ (𝐸𝑚 𝑆)(𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍 ∧ ∃𝑠𝑆 (𝑔𝑠) ≠ 0 ) ↔ ∃𝑔 ∈ (𝐸𝑚 𝑆)∃𝑠𝑆 ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 ))
74 rexcom 3080 . . . . 5 (∃𝑔 ∈ (𝐸𝑚 𝑆)∃𝑠𝑆 ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 ) ↔ ∃𝑠𝑆𝑔 ∈ (𝐸𝑚 𝑆)((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 ))
7573, 74bitri 263 . . . 4 (∃𝑔 ∈ (𝐸𝑚 𝑆)(𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍 ∧ ∃𝑠𝑆 (𝑔𝑠) ≠ 0 ) ↔ ∃𝑠𝑆𝑔 ∈ (𝐸𝑚 𝑆)((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 ))
7669, 75sylibr 223 . . 3 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ ∃𝑠𝑆𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) → ∃𝑔 ∈ (𝐸𝑚 𝑆)(𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍 ∧ ∃𝑠𝑆 (𝑔𝑠) ≠ 0 ))
7715, 18, 16, 5, 17islindeps 42036 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) → (𝑆 linDepS 𝑀 ↔ ∃𝑔 ∈ (𝐸𝑚 𝑆)(𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍 ∧ ∃𝑠𝑆 (𝑔𝑠) ≠ 0 )))
78773adant3 1074 . . . 4 ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) → (𝑆 linDepS 𝑀 ↔ ∃𝑔 ∈ (𝐸𝑚 𝑆)(𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍 ∧ ∃𝑠𝑆 (𝑔𝑠) ≠ 0 )))
7978adantr 480 . . 3 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ ∃𝑠𝑆𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) → (𝑆 linDepS 𝑀 ↔ ∃𝑔 ∈ (𝐸𝑚 𝑆)(𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍 ∧ ∃𝑠𝑆 (𝑔𝑠) ≠ 0 )))
8076, 79mpbird 246 . 2 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ ∃𝑠𝑆𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) → 𝑆 linDepS 𝑀)
8180ex 449 1 ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) → (∃𝑠𝑆𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠) → 𝑆 linDepS 𝑀))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ∃wrex 2897  Vcvv 3173   ∖ cdif 3537  ifcif 4036  𝒫 cpw 4108  {csn 4125   class class class wbr 4583   ↦ cmpt 4643  ‘cfv 5804  (class class class)co 6549   ↑𝑚 cmap 7744   finSupp cfsupp 8158  Basecbs 15695  Scalarcsca 15771   ·𝑠 cvsca 15772  0gc0g 15923  invgcminusg 17246  1rcur 18324  Ringcrg 18370  LModclmod 18686  NzRingcnzr 19078   linC clinc 41987   linDepS clindeps 42024 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-tpos 7239  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-seq 12664  df-hash 12980  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-0g 15925  df-gsum 15926  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-grp 17248  df-minusg 17249  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-oppr 18446  df-dvdsr 18464  df-unit 18465  df-invr 18495  df-lmod 18688  df-nzr 19079  df-linc 41989  df-lininds 42025  df-lindeps 42027 This theorem is referenced by:  islininds2  42067  isldepslvec2  42068
 Copyright terms: Public domain W3C validator