Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lincext1 Structured version   Visualization version   GIF version

Theorem lincext1 42037
Description: Property 1 of an extension of a linear combination. (Contributed by AV, 20-Apr-2019.) (Revised by AV, 29-Apr-2019.)
Hypotheses
Ref Expression
lincext.b 𝐵 = (Base‘𝑀)
lincext.r 𝑅 = (Scalar‘𝑀)
lincext.e 𝐸 = (Base‘𝑅)
lincext.0 0 = (0g𝑅)
lincext.z 𝑍 = (0g𝑀)
lincext.n 𝑁 = (invg𝑅)
lincext.f 𝐹 = (𝑧𝑆 ↦ if(𝑧 = 𝑋, (𝑁𝑌), (𝐺𝑧)))
Assertion
Ref Expression
lincext1 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸𝑚 (𝑆 ∖ {𝑋})))) → 𝐹 ∈ (𝐸𝑚 𝑆))
Distinct variable groups:   𝑧,𝐵   𝑧,𝐸   𝑧,𝐺   𝑧,𝑀   𝑧,𝑆   𝑧,𝑋   𝑧,𝑌
Allowed substitution hints:   𝑅(𝑧)   𝐹(𝑧)   𝑁(𝑧)   0 (𝑧)   𝑍(𝑧)

Proof of Theorem lincext1
StepHypRef Expression
1 lincext.f . 2 𝐹 = (𝑧𝑆 ↦ if(𝑧 = 𝑋, (𝑁𝑌), (𝐺𝑧)))
2 lincext.r . . . . . . . 8 𝑅 = (Scalar‘𝑀)
3 eqid 2610 . . . . . . . . . 10 (Scalar‘𝑀) = (Scalar‘𝑀)
43lmodfgrp 18695 . . . . . . . . 9 (𝑀 ∈ LMod → (Scalar‘𝑀) ∈ Grp)
54ad2antrr 758 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸𝑚 (𝑆 ∖ {𝑋})))) → (Scalar‘𝑀) ∈ Grp)
62, 5syl5eqel 2692 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸𝑚 (𝑆 ∖ {𝑋})))) → 𝑅 ∈ Grp)
7 simpr1 1060 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸𝑚 (𝑆 ∖ {𝑋})))) → 𝑌𝐸)
8 lincext.e . . . . . . . 8 𝐸 = (Base‘𝑅)
9 lincext.n . . . . . . . 8 𝑁 = (invg𝑅)
108, 9grpinvcl 17290 . . . . . . 7 ((𝑅 ∈ Grp ∧ 𝑌𝐸) → (𝑁𝑌) ∈ 𝐸)
116, 7, 10syl2anc 691 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸𝑚 (𝑆 ∖ {𝑋})))) → (𝑁𝑌) ∈ 𝐸)
1211ad2antrr 758 . . . . 5 (((((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸𝑚 (𝑆 ∖ {𝑋})))) ∧ 𝑧𝑆) ∧ 𝑧 = 𝑋) → (𝑁𝑌) ∈ 𝐸)
13 elmapi 7765 . . . . . . . . 9 (𝐺 ∈ (𝐸𝑚 (𝑆 ∖ {𝑋})) → 𝐺:(𝑆 ∖ {𝑋})⟶𝐸)
14 df-ne 2782 . . . . . . . . . . . . . 14 (𝑧𝑋 ↔ ¬ 𝑧 = 𝑋)
1514biimpri 217 . . . . . . . . . . . . 13 𝑧 = 𝑋𝑧𝑋)
1615anim2i 591 . . . . . . . . . . . 12 ((𝑧𝑆 ∧ ¬ 𝑧 = 𝑋) → (𝑧𝑆𝑧𝑋))
17 eldifsn 4260 . . . . . . . . . . . 12 (𝑧 ∈ (𝑆 ∖ {𝑋}) ↔ (𝑧𝑆𝑧𝑋))
1816, 17sylibr 223 . . . . . . . . . . 11 ((𝑧𝑆 ∧ ¬ 𝑧 = 𝑋) → 𝑧 ∈ (𝑆 ∖ {𝑋}))
19 ffvelrn 6265 . . . . . . . . . . 11 ((𝐺:(𝑆 ∖ {𝑋})⟶𝐸𝑧 ∈ (𝑆 ∖ {𝑋})) → (𝐺𝑧) ∈ 𝐸)
2018, 19sylan2 490 . . . . . . . . . 10 ((𝐺:(𝑆 ∖ {𝑋})⟶𝐸 ∧ (𝑧𝑆 ∧ ¬ 𝑧 = 𝑋)) → (𝐺𝑧) ∈ 𝐸)
2120ex 449 . . . . . . . . 9 (𝐺:(𝑆 ∖ {𝑋})⟶𝐸 → ((𝑧𝑆 ∧ ¬ 𝑧 = 𝑋) → (𝐺𝑧) ∈ 𝐸))
2213, 21syl 17 . . . . . . . 8 (𝐺 ∈ (𝐸𝑚 (𝑆 ∖ {𝑋})) → ((𝑧𝑆 ∧ ¬ 𝑧 = 𝑋) → (𝐺𝑧) ∈ 𝐸))
23223ad2ant3 1077 . . . . . . 7 ((𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸𝑚 (𝑆 ∖ {𝑋}))) → ((𝑧𝑆 ∧ ¬ 𝑧 = 𝑋) → (𝐺𝑧) ∈ 𝐸))
2423adantl 481 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸𝑚 (𝑆 ∖ {𝑋})))) → ((𝑧𝑆 ∧ ¬ 𝑧 = 𝑋) → (𝐺𝑧) ∈ 𝐸))
2524impl 648 . . . . 5 (((((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸𝑚 (𝑆 ∖ {𝑋})))) ∧ 𝑧𝑆) ∧ ¬ 𝑧 = 𝑋) → (𝐺𝑧) ∈ 𝐸)
2612, 25ifclda 4070 . . . 4 ((((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸𝑚 (𝑆 ∖ {𝑋})))) ∧ 𝑧𝑆) → if(𝑧 = 𝑋, (𝑁𝑌), (𝐺𝑧)) ∈ 𝐸)
27 eqid 2610 . . . 4 (𝑧𝑆 ↦ if(𝑧 = 𝑋, (𝑁𝑌), (𝐺𝑧))) = (𝑧𝑆 ↦ if(𝑧 = 𝑋, (𝑁𝑌), (𝐺𝑧)))
2826, 27fmptd 6292 . . 3 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸𝑚 (𝑆 ∖ {𝑋})))) → (𝑧𝑆 ↦ if(𝑧 = 𝑋, (𝑁𝑌), (𝐺𝑧))):𝑆𝐸)
29 simpr 476 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) → 𝑆 ∈ 𝒫 𝐵)
30 fvex 6113 . . . . . . 7 (Base‘𝑅) ∈ V
318, 30eqeltri 2684 . . . . . 6 𝐸 ∈ V
3229, 31jctil 558 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) → (𝐸 ∈ V ∧ 𝑆 ∈ 𝒫 𝐵))
3332adantr 480 . . . 4 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸𝑚 (𝑆 ∖ {𝑋})))) → (𝐸 ∈ V ∧ 𝑆 ∈ 𝒫 𝐵))
34 elmapg 7757 . . . 4 ((𝐸 ∈ V ∧ 𝑆 ∈ 𝒫 𝐵) → ((𝑧𝑆 ↦ if(𝑧 = 𝑋, (𝑁𝑌), (𝐺𝑧))) ∈ (𝐸𝑚 𝑆) ↔ (𝑧𝑆 ↦ if(𝑧 = 𝑋, (𝑁𝑌), (𝐺𝑧))):𝑆𝐸))
3533, 34syl 17 . . 3 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸𝑚 (𝑆 ∖ {𝑋})))) → ((𝑧𝑆 ↦ if(𝑧 = 𝑋, (𝑁𝑌), (𝐺𝑧))) ∈ (𝐸𝑚 𝑆) ↔ (𝑧𝑆 ↦ if(𝑧 = 𝑋, (𝑁𝑌), (𝐺𝑧))):𝑆𝐸))
3628, 35mpbird 246 . 2 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸𝑚 (𝑆 ∖ {𝑋})))) → (𝑧𝑆 ↦ if(𝑧 = 𝑋, (𝑁𝑌), (𝐺𝑧))) ∈ (𝐸𝑚 𝑆))
371, 36syl5eqel 2692 1 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸𝑚 (𝑆 ∖ {𝑋})))) → 𝐹 ∈ (𝐸𝑚 𝑆))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  Vcvv 3173  cdif 3537  ifcif 4036  𝒫 cpw 4108  {csn 4125  cmpt 4643  wf 5800  cfv 5804  (class class class)co 6549  𝑚 cmap 7744  Basecbs 15695  Scalarcsca 15771  0gc0g 15923  Grpcgrp 17245  invgcminusg 17246  LModclmod 18686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-map 7746  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-minusg 17249  df-ring 18372  df-lmod 18688
This theorem is referenced by:  lincext2  42038  lincext3  42039  lindslinindsimp1  42040  islindeps2  42066
  Copyright terms: Public domain W3C validator