Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lincext2 Structured version   Visualization version   GIF version

Theorem lincext2 42038
Description: Property 2 of an extension of a linear combination. (Contributed by AV, 20-Apr-2019.) (Revised by AV, 30-Jul-2019.)
Hypotheses
Ref Expression
lincext.b 𝐵 = (Base‘𝑀)
lincext.r 𝑅 = (Scalar‘𝑀)
lincext.e 𝐸 = (Base‘𝑅)
lincext.0 0 = (0g𝑅)
lincext.z 𝑍 = (0g𝑀)
lincext.n 𝑁 = (invg𝑅)
lincext.f 𝐹 = (𝑧𝑆 ↦ if(𝑧 = 𝑋, (𝑁𝑌), (𝐺𝑧)))
Assertion
Ref Expression
lincext2 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸𝑚 (𝑆 ∖ {𝑋}))) ∧ 𝐺 finSupp 0 ) → 𝐹 finSupp 0 )
Distinct variable groups:   𝑧,𝐵   𝑧,𝐸   𝑧,𝐺   𝑧,𝑀   𝑧,𝑆   𝑧,𝑋   𝑧,𝑌
Allowed substitution hints:   𝑅(𝑧)   𝐹(𝑧)   𝑁(𝑧)   0 (𝑧)   𝑍(𝑧)

Proof of Theorem lincext2
StepHypRef Expression
1 fvex 6113 . . . . . 6 (𝑁𝑌) ∈ V
2 fvex 6113 . . . . . 6 (𝐺𝑧) ∈ V
31, 2ifex 4106 . . . . 5 if(𝑧 = 𝑋, (𝑁𝑌), (𝐺𝑧)) ∈ V
4 lincext.f . . . . 5 𝐹 = (𝑧𝑆 ↦ if(𝑧 = 𝑋, (𝑁𝑌), (𝐺𝑧)))
53, 4dmmpti 5936 . . . 4 dom 𝐹 = 𝑆
65difeq1i 3686 . . 3 (dom 𝐹 ∖ (𝑆 ∖ {𝑋})) = (𝑆 ∖ (𝑆 ∖ {𝑋}))
7 snssi 4280 . . . . . . 7 (𝑋𝑆 → {𝑋} ⊆ 𝑆)
873ad2ant2 1076 . . . . . 6 ((𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸𝑚 (𝑆 ∖ {𝑋}))) → {𝑋} ⊆ 𝑆)
983ad2ant2 1076 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸𝑚 (𝑆 ∖ {𝑋}))) ∧ 𝐺 finSupp 0 ) → {𝑋} ⊆ 𝑆)
10 dfss4 3820 . . . . 5 ({𝑋} ⊆ 𝑆 ↔ (𝑆 ∖ (𝑆 ∖ {𝑋})) = {𝑋})
119, 10sylib 207 . . . 4 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸𝑚 (𝑆 ∖ {𝑋}))) ∧ 𝐺 finSupp 0 ) → (𝑆 ∖ (𝑆 ∖ {𝑋})) = {𝑋})
12 snfi 7923 . . . 4 {𝑋} ∈ Fin
1311, 12syl6eqel 2696 . . 3 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸𝑚 (𝑆 ∖ {𝑋}))) ∧ 𝐺 finSupp 0 ) → (𝑆 ∖ (𝑆 ∖ {𝑋})) ∈ Fin)
146, 13syl5eqel 2692 . 2 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸𝑚 (𝑆 ∖ {𝑋}))) ∧ 𝐺 finSupp 0 ) → (dom 𝐹 ∖ (𝑆 ∖ {𝑋})) ∈ Fin)
15 lincext.b . . . 4 𝐵 = (Base‘𝑀)
16 lincext.r . . . 4 𝑅 = (Scalar‘𝑀)
17 lincext.e . . . 4 𝐸 = (Base‘𝑅)
18 lincext.0 . . . 4 0 = (0g𝑅)
19 lincext.z . . . 4 𝑍 = (0g𝑀)
20 lincext.n . . . 4 𝑁 = (invg𝑅)
2115, 16, 17, 18, 19, 20, 4lincext1 42037 . . 3 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸𝑚 (𝑆 ∖ {𝑋})))) → 𝐹 ∈ (𝐸𝑚 𝑆))
22213adant3 1074 . 2 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸𝑚 (𝑆 ∖ {𝑋}))) ∧ 𝐺 finSupp 0 ) → 𝐹 ∈ (𝐸𝑚 𝑆))
23 elmapfun 7767 . . 3 (𝐹 ∈ (𝐸𝑚 𝑆) → Fun 𝐹)
2422, 23syl 17 . 2 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸𝑚 (𝑆 ∖ {𝑋}))) ∧ 𝐺 finSupp 0 ) → Fun 𝐹)
25 elmapi 7765 . . . . 5 (𝐺 ∈ (𝐸𝑚 (𝑆 ∖ {𝑋})) → 𝐺:(𝑆 ∖ {𝑋})⟶𝐸)
264fdmdifeqresdif 41913 . . . . 5 (𝐺:(𝑆 ∖ {𝑋})⟶𝐸𝐺 = (𝐹 ↾ (𝑆 ∖ {𝑋})))
2725, 26syl 17 . . . 4 (𝐺 ∈ (𝐸𝑚 (𝑆 ∖ {𝑋})) → 𝐺 = (𝐹 ↾ (𝑆 ∖ {𝑋})))
28273ad2ant3 1077 . . 3 ((𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸𝑚 (𝑆 ∖ {𝑋}))) → 𝐺 = (𝐹 ↾ (𝑆 ∖ {𝑋})))
29283ad2ant2 1076 . 2 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸𝑚 (𝑆 ∖ {𝑋}))) ∧ 𝐺 finSupp 0 ) → 𝐺 = (𝐹 ↾ (𝑆 ∖ {𝑋})))
30 simp3 1056 . 2 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸𝑚 (𝑆 ∖ {𝑋}))) ∧ 𝐺 finSupp 0 ) → 𝐺 finSupp 0 )
31 fvex 6113 . . . 4 (0g𝑅) ∈ V
3218, 31eqeltri 2684 . . 3 0 ∈ V
3332a1i 11 . 2 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸𝑚 (𝑆 ∖ {𝑋}))) ∧ 𝐺 finSupp 0 ) → 0 ∈ V)
3414, 22, 24, 29, 30, 33resfsupp 8185 1 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸𝑚 (𝑆 ∖ {𝑋}))) ∧ 𝐺 finSupp 0 ) → 𝐹 finSupp 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  Vcvv 3173  cdif 3537  wss 3540  ifcif 4036  𝒫 cpw 4108  {csn 4125   class class class wbr 4583  cmpt 4643  dom cdm 5038  cres 5040  Fun wfun 5798  wf 5800  cfv 5804  (class class class)co 6549  𝑚 cmap 7744  Fincfn 7841   finSupp cfsupp 8158  Basecbs 15695  Scalarcsca 15771  0gc0g 15923  invgcminusg 17246  LModclmod 18686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-fin 7845  df-fsupp 8159  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-minusg 17249  df-ring 18372  df-lmod 18688
This theorem is referenced by:  lincext3  42039  lindslinindsimp1  42040  islindeps2  42066
  Copyright terms: Public domain W3C validator