Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lindslinindsimp1 Structured version   Visualization version   GIF version

Theorem lindslinindsimp1 42040
 Description: Implication 1 for lindslininds 42047. (Contributed by AV, 25-Apr-2019.) (Revised by AV, 30-Jul-2019.)
Hypotheses
Ref Expression
lindslinind.r 𝑅 = (Scalar‘𝑀)
lindslinind.b 𝐵 = (Base‘𝑅)
lindslinind.0 0 = (0g𝑅)
lindslinind.z 𝑍 = (0g𝑀)
Assertion
Ref Expression
lindslinindsimp1 ((𝑆𝑉𝑀 ∈ LMod) → ((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵𝑚 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 )) → (𝑆 ⊆ (Base‘𝑀) ∧ ∀𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }) ¬ (𝑦( ·𝑠𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠})))))
Distinct variable groups:   𝐵,𝑓,𝑠,𝑦   𝑓,𝑀,𝑠,𝑦   𝑅,𝑓,𝑥   𝑆,𝑓,𝑠,𝑥,𝑦   𝑉,𝑠,𝑦   𝑓,𝑍,𝑠,𝑦   0 ,𝑓,𝑠,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑥)   𝑅(𝑦,𝑠)   𝑀(𝑥)   𝑉(𝑥,𝑓)   𝑍(𝑥)

Proof of Theorem lindslinindsimp1
Dummy variables 𝑔 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elpwi 4117 . . . 4 (𝑆 ∈ 𝒫 (Base‘𝑀) → 𝑆 ⊆ (Base‘𝑀))
21ad2antrl 760 . . 3 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵𝑚 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) → 𝑆 ⊆ (Base‘𝑀))
3 simpr 476 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑆𝑉𝑀 ∈ LMod) → 𝑀 ∈ LMod)
43anim2i 591 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) → (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ 𝑀 ∈ LMod))
54ancomd 466 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) → (𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 (Base‘𝑀)))
65ad2antrr 758 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → (𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 (Base‘𝑀)))
7 eldifi 3694 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦 ∈ (𝐵 ∖ { 0 }) → 𝑦𝐵)
87adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 })) → 𝑦𝐵)
98adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) → 𝑦𝐵)
109adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → 𝑦𝐵)
11 simprl 790 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) → 𝑠𝑆)
1211adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → 𝑠𝑆)
13 simprl 790 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → 𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑠})))
1410, 12, 133jca 1235 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → (𝑦𝐵𝑠𝑆𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑠}))))
15 simprrl 800 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → 𝑔 finSupp 0 )
16 eqid 2610 . . . . . . . . . . . . . . . . . . . . . . . 24 (Base‘𝑀) = (Base‘𝑀)
17 lindslinind.r . . . . . . . . . . . . . . . . . . . . . . . 24 𝑅 = (Scalar‘𝑀)
18 lindslinind.b . . . . . . . . . . . . . . . . . . . . . . . 24 𝐵 = (Base‘𝑅)
19 lindslinind.0 . . . . . . . . . . . . . . . . . . . . . . . 24 0 = (0g𝑅)
20 lindslinind.z . . . . . . . . . . . . . . . . . . . . . . . 24 𝑍 = (0g𝑀)
21 eqid 2610 . . . . . . . . . . . . . . . . . . . . . . . 24 (invg𝑅) = (invg𝑅)
22 eqid 2610 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧))) = (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))
2316, 17, 18, 19, 20, 21, 22lincext2 42038 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 (Base‘𝑀)) ∧ (𝑦𝐵𝑠𝑆𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑠}))) ∧ 𝑔 finSupp 0 ) → (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧))) finSupp 0 )
246, 14, 15, 23syl3anc 1318 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧))) finSupp 0 )
254adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) → (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ 𝑀 ∈ LMod))
2625ancomd 466 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) → (𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 (Base‘𝑀)))
2726adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → (𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 (Base‘𝑀)))
2816, 17, 18, 19, 20, 21, 22lincext1 42037 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 (Base‘𝑀)) ∧ (𝑦𝐵𝑠𝑆𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑠})))) → (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧))) ∈ (𝐵𝑚 𝑆))
2927, 14, 28syl2anc 691 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧))) ∈ (𝐵𝑚 𝑆))
30 breq1 4586 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑓 = (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧))) → (𝑓 finSupp 0 ↔ (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧))) finSupp 0 ))
31 oveq1 6556 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑓 = (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧))) → (𝑓( linC ‘𝑀)𝑆) = ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))( linC ‘𝑀)𝑆))
3231eqeq1d 2612 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑓 = (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧))) → ((𝑓( linC ‘𝑀)𝑆) = 𝑍 ↔ ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))( linC ‘𝑀)𝑆) = 𝑍))
3330, 32anbi12d 743 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑓 = (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧))) → ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) ↔ ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧))) finSupp 0 ∧ ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))( linC ‘𝑀)𝑆) = 𝑍)))
34 fveq1 6102 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑓 = (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧))) → (𝑓𝑥) = ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))‘𝑥))
3534eqeq1d 2612 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑓 = (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧))) → ((𝑓𝑥) = 0 ↔ ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))‘𝑥) = 0 ))
3635ralbidv 2969 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑓 = (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧))) → (∀𝑥𝑆 (𝑓𝑥) = 0 ↔ ∀𝑥𝑆 ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))‘𝑥) = 0 ))
3733, 36imbi12d 333 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑓 = (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧))) → (((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ) ↔ (((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧))) finSupp 0 ∧ ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))‘𝑥) = 0 )))
3837rspcv 3278 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧))) ∈ (𝐵𝑚 𝑆) → (∀𝑓 ∈ (𝐵𝑚 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ) → (((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧))) finSupp 0 ∧ ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))‘𝑥) = 0 )))
3929, 38syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → (∀𝑓 ∈ (𝐵𝑚 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ) → (((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧))) finSupp 0 ∧ ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))‘𝑥) = 0 )))
4039exp4a 631 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → (∀𝑓 ∈ (𝐵𝑚 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ) → ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧))) finSupp 0 → (((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))( linC ‘𝑀)𝑆) = 𝑍 → ∀𝑥𝑆 ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))‘𝑥) = 0 ))))
4124, 40mpid 43 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → (∀𝑓 ∈ (𝐵𝑚 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ) → (((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))( linC ‘𝑀)𝑆) = 𝑍 → ∀𝑥𝑆 ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))‘𝑥) = 0 )))
42 simprr 792 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))
4316, 17, 18, 19, 20, 21, 22lincext3 42039 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 (Base‘𝑀)) ∧ (𝑦𝐵𝑠𝑆𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑠}))) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) → ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))( linC ‘𝑀)𝑆) = 𝑍)
446, 14, 42, 43syl3anc 1318 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))( linC ‘𝑀)𝑆) = 𝑍)
45 fveq2 6103 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 = 𝑠 → ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))‘𝑥) = ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))‘𝑠))
4645eqeq1d 2612 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = 𝑠 → (((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))‘𝑥) = 0 ↔ ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))‘𝑠) = 0 ))
4746rspcv 3278 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠𝑆 → (∀𝑥𝑆 ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))‘𝑥) = 0 → ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))‘𝑠) = 0 ))
4812, 47syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → (∀𝑥𝑆 ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))‘𝑥) = 0 → ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))‘𝑠) = 0 ))
49 eqidd 2611 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) → (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧))) = (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧))))
50 iftrue 4042 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑧 = 𝑠 → if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)) = ((invg𝑅)‘𝑦))
5150adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ 𝑧 = 𝑠) → if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)) = ((invg𝑅)‘𝑦))
52 fvex 6113 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((invg𝑅)‘𝑦) ∈ V
5352a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) → ((invg𝑅)‘𝑦) ∈ V)
5449, 51, 11, 53fvmptd 6197 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) → ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))‘𝑠) = ((invg𝑅)‘𝑦))
5554adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))‘𝑠) = ((invg𝑅)‘𝑦))
5655eqeq1d 2612 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → (((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))‘𝑠) = 0 ↔ ((invg𝑅)‘𝑦) = 0 ))
5717lmodfgrp 18695 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑀 ∈ LMod → 𝑅 ∈ Grp)
5818, 19, 21grpinvnzcl 17310 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑅 ∈ Grp ∧ 𝑦 ∈ (𝐵 ∖ { 0 })) → ((invg𝑅)‘𝑦) ∈ (𝐵 ∖ { 0 }))
59 eldif 3550 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((invg𝑅)‘𝑦) ∈ (𝐵 ∖ { 0 }) ↔ (((invg𝑅)‘𝑦) ∈ 𝐵 ∧ ¬ ((invg𝑅)‘𝑦) ∈ { 0 }))
6052elsn 4140 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((invg𝑅)‘𝑦) ∈ { 0 } ↔ ((invg𝑅)‘𝑦) = 0 )
61 pm2.21 119 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (¬ ((invg𝑅)‘𝑦) = 0 → (((invg𝑅)‘𝑦) = 0 → (𝑆𝑉 → (𝑠𝑆 → (𝑆 ∈ 𝒫 (Base‘𝑀) → ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))))))
6261com25 97 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (¬ ((invg𝑅)‘𝑦) = 0 → (𝑆 ∈ 𝒫 (Base‘𝑀) → (𝑆𝑉 → (𝑠𝑆 → (((invg𝑅)‘𝑦) = 0 → ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))))))
6360, 62sylnbi 319 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (¬ ((invg𝑅)‘𝑦) ∈ { 0 } → (𝑆 ∈ 𝒫 (Base‘𝑀) → (𝑆𝑉 → (𝑠𝑆 → (((invg𝑅)‘𝑦) = 0 → ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))))))
6463adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((invg𝑅)‘𝑦) ∈ 𝐵 ∧ ¬ ((invg𝑅)‘𝑦) ∈ { 0 }) → (𝑆 ∈ 𝒫 (Base‘𝑀) → (𝑆𝑉 → (𝑠𝑆 → (((invg𝑅)‘𝑦) = 0 → ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))))))
6559, 64sylbi 206 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((invg𝑅)‘𝑦) ∈ (𝐵 ∖ { 0 }) → (𝑆 ∈ 𝒫 (Base‘𝑀) → (𝑆𝑉 → (𝑠𝑆 → (((invg𝑅)‘𝑦) = 0 → ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))))))
6658, 65syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑅 ∈ Grp ∧ 𝑦 ∈ (𝐵 ∖ { 0 })) → (𝑆 ∈ 𝒫 (Base‘𝑀) → (𝑆𝑉 → (𝑠𝑆 → (((invg𝑅)‘𝑦) = 0 → ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))))))
6766ex 449 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑅 ∈ Grp → (𝑦 ∈ (𝐵 ∖ { 0 }) → (𝑆 ∈ 𝒫 (Base‘𝑀) → (𝑆𝑉 → (𝑠𝑆 → (((invg𝑅)‘𝑦) = 0 → ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))))))
6857, 67syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑀 ∈ LMod → (𝑦 ∈ (𝐵 ∖ { 0 }) → (𝑆 ∈ 𝒫 (Base‘𝑀) → (𝑆𝑉 → (𝑠𝑆 → (((invg𝑅)‘𝑦) = 0 → ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))))))
6968com24 93 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑀 ∈ LMod → (𝑆𝑉 → (𝑆 ∈ 𝒫 (Base‘𝑀) → (𝑦 ∈ (𝐵 ∖ { 0 }) → (𝑠𝑆 → (((invg𝑅)‘𝑦) = 0 → ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))))))
7069impcom 445 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑆𝑉𝑀 ∈ LMod) → (𝑆 ∈ 𝒫 (Base‘𝑀) → (𝑦 ∈ (𝐵 ∖ { 0 }) → (𝑠𝑆 → (((invg𝑅)‘𝑦) = 0 → ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))))))
7170impcom 445 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) → (𝑦 ∈ (𝐵 ∖ { 0 }) → (𝑠𝑆 → (((invg𝑅)‘𝑦) = 0 → ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))))
7271com13 86 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑠𝑆 → (𝑦 ∈ (𝐵 ∖ { 0 }) → ((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) → (((invg𝑅)‘𝑦) = 0 → ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))))
7372imp 444 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 })) → ((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) → (((invg𝑅)‘𝑦) = 0 → ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))))
7473impcom 445 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) → (((invg𝑅)‘𝑦) = 0 → ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))
7574adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → (((invg𝑅)‘𝑦) = 0 → ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))
7656, 75sylbid 229 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → (((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))‘𝑠) = 0 → ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))
7748, 76syld 46 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → (∀𝑥𝑆 ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))‘𝑥) = 0 → ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))
7844, 77embantd 57 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → ((((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))( linC ‘𝑀)𝑆) = 𝑍 → ∀𝑥𝑆 ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))‘𝑥) = 0 ) → ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))
7941, 78syld 46 . . . . . . . . . . . . . . . . . . . 20 ((((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → (∀𝑓 ∈ (𝐵𝑚 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ) → ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))
8079com12 32 . . . . . . . . . . . . . . . . . . 19 (∀𝑓 ∈ (𝐵𝑚 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ) → ((((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))
8180expd 451 . . . . . . . . . . . . . . . . . 18 (∀𝑓 ∈ (𝐵𝑚 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ) → (((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) → ((𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) → ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))))
8281exp4c 634 . . . . . . . . . . . . . . . . 17 (∀𝑓 ∈ (𝐵𝑚 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ) → (𝑆 ∈ 𝒫 (Base‘𝑀) → ((𝑆𝑉𝑀 ∈ LMod) → ((𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 })) → ((𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) → ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))))))
8382impcom 445 . . . . . . . . . . . . . . . 16 ((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵𝑚 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 )) → ((𝑆𝑉𝑀 ∈ LMod) → ((𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 })) → ((𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) → ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))))
8483impcom 445 . . . . . . . . . . . . . . 15 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵𝑚 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) → ((𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 })) → ((𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) → ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))))
8584imp 444 . . . . . . . . . . . . . 14 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵𝑚 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) → ((𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) → ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))
8685expdimp 452 . . . . . . . . . . . . 13 (((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵𝑚 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ 𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑠}))) → ((𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))) → ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))
8786expd 451 . . . . . . . . . . . 12 (((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵𝑚 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ 𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑠}))) → (𝑔 finSupp 0 → ((𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})) → ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))))
8887impcom 445 . . . . . . . . . . 11 ((𝑔 finSupp 0 ∧ ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵𝑚 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ 𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑠})))) → ((𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})) → ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))
8988pm2.01d 180 . . . . . . . . . 10 ((𝑔 finSupp 0 ∧ ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵𝑚 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ 𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑠})))) → ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))
9089olcd 407 . . . . . . . . 9 ((𝑔 finSupp 0 ∧ ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵𝑚 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ 𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑠})))) → (¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))
91 simpl 472 . . . . . . . . . 10 ((¬ 𝑔 finSupp 0 ∧ ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵𝑚 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ 𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑠})))) → ¬ 𝑔 finSupp 0 )
9291orcd 406 . . . . . . . . 9 ((¬ 𝑔 finSupp 0 ∧ ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵𝑚 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ 𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑠})))) → (¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))
9390, 92pm2.61ian 827 . . . . . . . 8 (((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵𝑚 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ 𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑠}))) → (¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))
9493ralrimiva 2949 . . . . . . 7 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵𝑚 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) → ∀𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))
95 ralnex 2975 . . . . . . . 8 (∀𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑠})) ¬ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))) ↔ ¬ ∃𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))
96 ianor 508 . . . . . . . . 9 (¬ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))) ↔ (¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))
9796ralbii 2963 . . . . . . . 8 (∀𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑠})) ¬ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))) ↔ ∀𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))
9895, 97bitr3i 265 . . . . . . 7 (¬ ∃𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))) ↔ ∀𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))
9994, 98sylibr 223 . . . . . 6 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵𝑚 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) → ¬ ∃𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))
10099intnand 953 . . . . 5 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵𝑚 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) → ¬ ((𝑦( ·𝑠𝑀)𝑠) ∈ (Base‘𝑀) ∧ ∃𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))))
1013ad2antrr 758 . . . . . . 7 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵𝑚 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) → 𝑀 ∈ LMod)
1021ssdifssd 3710 . . . . . . . . . 10 (𝑆 ∈ 𝒫 (Base‘𝑀) → (𝑆 ∖ {𝑠}) ⊆ (Base‘𝑀))
103102ad2antrl 760 . . . . . . . . 9 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵𝑚 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) → (𝑆 ∖ {𝑠}) ⊆ (Base‘𝑀))
104 difexg 4735 . . . . . . . . . . 11 (𝑆𝑉 → (𝑆 ∖ {𝑠}) ∈ V)
105104ad2antrr 758 . . . . . . . . . 10 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵𝑚 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) → (𝑆 ∖ {𝑠}) ∈ V)
106 elpwg 4116 . . . . . . . . . 10 ((𝑆 ∖ {𝑠}) ∈ V → ((𝑆 ∖ {𝑠}) ∈ 𝒫 (Base‘𝑀) ↔ (𝑆 ∖ {𝑠}) ⊆ (Base‘𝑀)))
107105, 106syl 17 . . . . . . . . 9 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵𝑚 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) → ((𝑆 ∖ {𝑠}) ∈ 𝒫 (Base‘𝑀) ↔ (𝑆 ∖ {𝑠}) ⊆ (Base‘𝑀)))
108103, 107mpbird 246 . . . . . . . 8 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵𝑚 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) → (𝑆 ∖ {𝑠}) ∈ 𝒫 (Base‘𝑀))
109108adantr 480 . . . . . . 7 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵𝑚 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) → (𝑆 ∖ {𝑠}) ∈ 𝒫 (Base‘𝑀))
11016lspeqlco 42022 . . . . . . . . 9 ((𝑀 ∈ LMod ∧ (𝑆 ∖ {𝑠}) ∈ 𝒫 (Base‘𝑀)) → (𝑀 LinCo (𝑆 ∖ {𝑠})) = ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠})))
111110eleq2d 2673 . . . . . . . 8 ((𝑀 ∈ LMod ∧ (𝑆 ∖ {𝑠}) ∈ 𝒫 (Base‘𝑀)) → ((𝑦( ·𝑠𝑀)𝑠) ∈ (𝑀 LinCo (𝑆 ∖ {𝑠})) ↔ (𝑦( ·𝑠𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠}))))
112111bicomd 212 . . . . . . 7 ((𝑀 ∈ LMod ∧ (𝑆 ∖ {𝑠}) ∈ 𝒫 (Base‘𝑀)) → ((𝑦( ·𝑠𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠})) ↔ (𝑦( ·𝑠𝑀)𝑠) ∈ (𝑀 LinCo (𝑆 ∖ {𝑠}))))
113101, 109, 112syl2anc 691 . . . . . 6 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵𝑚 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) → ((𝑦( ·𝑠𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠})) ↔ (𝑦( ·𝑠𝑀)𝑠) ∈ (𝑀 LinCo (𝑆 ∖ {𝑠}))))
1143adantr 480 . . . . . . . . 9 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵𝑚 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) → 𝑀 ∈ LMod)
115 difexg 4735 . . . . . . . . . . . 12 (𝑆 ∈ 𝒫 (Base‘𝑀) → (𝑆 ∖ {𝑠}) ∈ V)
116115, 106syl 17 . . . . . . . . . . 11 (𝑆 ∈ 𝒫 (Base‘𝑀) → ((𝑆 ∖ {𝑠}) ∈ 𝒫 (Base‘𝑀) ↔ (𝑆 ∖ {𝑠}) ⊆ (Base‘𝑀)))
117102, 116mpbird 246 . . . . . . . . . 10 (𝑆 ∈ 𝒫 (Base‘𝑀) → (𝑆 ∖ {𝑠}) ∈ 𝒫 (Base‘𝑀))
118117ad2antrl 760 . . . . . . . . 9 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵𝑚 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) → (𝑆 ∖ {𝑠}) ∈ 𝒫 (Base‘𝑀))
119114, 118jca 553 . . . . . . . 8 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵𝑚 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) → (𝑀 ∈ LMod ∧ (𝑆 ∖ {𝑠}) ∈ 𝒫 (Base‘𝑀)))
120119adantr 480 . . . . . . 7 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵𝑚 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) → (𝑀 ∈ LMod ∧ (𝑆 ∖ {𝑠}) ∈ 𝒫 (Base‘𝑀)))
12116, 17, 18lcoval 41995 . . . . . . . 8 ((𝑀 ∈ LMod ∧ (𝑆 ∖ {𝑠}) ∈ 𝒫 (Base‘𝑀)) → ((𝑦( ·𝑠𝑀)𝑠) ∈ (𝑀 LinCo (𝑆 ∖ {𝑠})) ↔ ((𝑦( ·𝑠𝑀)𝑠) ∈ (Base‘𝑀) ∧ ∃𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑠}))(𝑔 finSupp (0g𝑅) ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))))
12219eqcomi 2619 . . . . . . . . . . . 12 (0g𝑅) = 0
123122breq2i 4591 . . . . . . . . . . 11 (𝑔 finSupp (0g𝑅) ↔ 𝑔 finSupp 0 )
124123anbi1i 727 . . . . . . . . . 10 ((𝑔 finSupp (0g𝑅) ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))) ↔ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))
125124rexbii 3023 . . . . . . . . 9 (∃𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑠}))(𝑔 finSupp (0g𝑅) ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))) ↔ ∃𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))
126125anbi2i 726 . . . . . . . 8 (((𝑦( ·𝑠𝑀)𝑠) ∈ (Base‘𝑀) ∧ ∃𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑠}))(𝑔 finSupp (0g𝑅) ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) ↔ ((𝑦( ·𝑠𝑀)𝑠) ∈ (Base‘𝑀) ∧ ∃𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))))
127121, 126syl6bb 275 . . . . . . 7 ((𝑀 ∈ LMod ∧ (𝑆 ∖ {𝑠}) ∈ 𝒫 (Base‘𝑀)) → ((𝑦( ·𝑠𝑀)𝑠) ∈ (𝑀 LinCo (𝑆 ∖ {𝑠})) ↔ ((𝑦( ·𝑠𝑀)𝑠) ∈ (Base‘𝑀) ∧ ∃𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))))
128120, 127syl 17 . . . . . 6 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵𝑚 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) → ((𝑦( ·𝑠𝑀)𝑠) ∈ (𝑀 LinCo (𝑆 ∖ {𝑠})) ↔ ((𝑦( ·𝑠𝑀)𝑠) ∈ (Base‘𝑀) ∧ ∃𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))))
129113, 128bitrd 267 . . . . 5 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵𝑚 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) → ((𝑦( ·𝑠𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠})) ↔ ((𝑦( ·𝑠𝑀)𝑠) ∈ (Base‘𝑀) ∧ ∃𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))))
130100, 129mtbird 314 . . . 4 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵𝑚 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) → ¬ (𝑦( ·𝑠𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠})))
131130ralrimivva 2954 . . 3 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵𝑚 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) → ∀𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }) ¬ (𝑦( ·𝑠𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠})))
1322, 131jca 553 . 2 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵𝑚 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) → (𝑆 ⊆ (Base‘𝑀) ∧ ∀𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }) ¬ (𝑦( ·𝑠𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠}))))
133132ex 449 1 ((𝑆𝑉𝑀 ∈ LMod) → ((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵𝑚 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 )) → (𝑆 ⊆ (Base‘𝑀) ∧ ∀𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }) ¬ (𝑦( ·𝑠𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠})))))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 195   ∨ wo 382   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  ∀wral 2896  ∃wrex 2897  Vcvv 3173   ∖ cdif 3537   ⊆ wss 3540  ifcif 4036  𝒫 cpw 4108  {csn 4125   class class class wbr 4583   ↦ cmpt 4643  ‘cfv 5804  (class class class)co 6549   ↑𝑚 cmap 7744   finSupp cfsupp 8158  Basecbs 15695  Scalarcsca 15771   ·𝑠 cvsca 15772  0gc0g 15923  Grpcgrp 17245  invgcminusg 17246  LModclmod 18686  LSpanclspn 18792   linC clinc 41987   LinCo clinco 41988 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-seq 12664  df-hash 12980  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-0g 15925  df-gsum 15926  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158  df-submnd 17159  df-grp 17248  df-minusg 17249  df-sbg 17250  df-mulg 17364  df-subg 17414  df-ghm 17481  df-cntz 17573  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-lmod 18688  df-lss 18754  df-lsp 18793  df-linc 41989  df-lco 41990 This theorem is referenced by:  lindslininds  42047
 Copyright terms: Public domain W3C validator