Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lindslinindsimp1 Structured version   Unicode version

Theorem lindslinindsimp1 30996
Description: Implication 1 for lindslininds 31003. (Contributed by AV, 25-Apr-2019.) (Revised by AV, 30-Jul-2019.)
Hypotheses
Ref Expression
lindslinind.r  |-  R  =  (Scalar `  M )
lindslinind.b  |-  B  =  ( Base `  R
)
lindslinind.0  |-  .0.  =  ( 0g `  R )
lindslinind.z  |-  Z  =  ( 0g `  M
)
Assertion
Ref Expression
lindslinindsimp1  |-  ( ( S  e.  V  /\  M  e.  LMod )  -> 
( ( S  e. 
~P ( Base `  M
)  /\  A. f  e.  ( B  ^m  S
) ( ( f finSupp  .0.  /\  ( f ( linC  `  M ) S )  =  Z )  ->  A. x  e.  S  ( f `  x
)  =  .0.  )
)  ->  ( S  C_  ( Base `  M
)  /\  A. s  e.  S  A. y  e.  ( B  \  {  .0.  } )  -.  (
y ( .s `  M ) s )  e.  ( ( LSpan `  M ) `  ( S  \  { s } ) ) ) ) )
Distinct variable groups:    B, f,
s, y    f, M, s, y    R, f, x    S, f, s, x, y    V, s, y    f, Z, s, y    .0. , f,
s, x, y
Allowed substitution hints:    B( x)    R( y, s)    M( x)    V( x, f)    Z( x)

Proof of Theorem lindslinindsimp1
Dummy variables  g 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elpwi 3874 . . . 4  |-  ( S  e.  ~P ( Base `  M )  ->  S  C_  ( Base `  M
) )
21ad2antrl 727 . . 3  |-  ( ( ( S  e.  V  /\  M  e.  LMod )  /\  ( S  e. 
~P ( Base `  M
)  /\  A. f  e.  ( B  ^m  S
) ( ( f finSupp  .0.  /\  ( f ( linC  `  M ) S )  =  Z )  ->  A. x  e.  S  ( f `  x
)  =  .0.  )
) )  ->  S  C_  ( Base `  M
) )
3 simpr 461 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( S  e.  V  /\  M  e.  LMod )  ->  M  e.  LMod )
43anim2i 569 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( S  e.  ~P ( Base `  M )  /\  ( S  e.  V  /\  M  e.  LMod ) )  ->  ( S  e.  ~P ( Base `  M )  /\  M  e.  LMod ) )
54ancomd 451 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( S  e.  ~P ( Base `  M )  /\  ( S  e.  V  /\  M  e.  LMod ) )  ->  ( M  e.  LMod  /\  S  e.  ~P ( Base `  M
) ) )
65ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( S  e. 
~P ( Base `  M
)  /\  ( S  e.  V  /\  M  e. 
LMod ) )  /\  ( s  e.  S  /\  y  e.  ( B  \  {  .0.  }
) ) )  /\  ( g  e.  ( B  ^m  ( S 
\  { s } ) )  /\  (
g finSupp  .0.  /\  ( y ( .s `  M
) s )  =  ( g ( linC  `  M ) ( S 
\  { s } ) ) ) ) )  ->  ( M  e.  LMod  /\  S  e.  ~P ( Base `  M
) ) )
7 eldifi 3483 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( y  e.  ( B  \  {  .0.  } )  -> 
y  e.  B )
87adantl 466 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( s  e.  S  /\  y  e.  ( B  \  {  .0.  } ) )  ->  y  e.  B )
98adantl 466 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( S  e.  ~P ( Base `  M )  /\  ( S  e.  V  /\  M  e.  LMod ) )  /\  (
s  e.  S  /\  y  e.  ( B  \  {  .0.  } ) ) )  ->  y  e.  B )
109adantr 465 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( S  e. 
~P ( Base `  M
)  /\  ( S  e.  V  /\  M  e. 
LMod ) )  /\  ( s  e.  S  /\  y  e.  ( B  \  {  .0.  }
) ) )  /\  ( g  e.  ( B  ^m  ( S 
\  { s } ) )  /\  (
g finSupp  .0.  /\  ( y ( .s `  M
) s )  =  ( g ( linC  `  M ) ( S 
\  { s } ) ) ) ) )  ->  y  e.  B )
11 simprl 755 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( S  e.  ~P ( Base `  M )  /\  ( S  e.  V  /\  M  e.  LMod ) )  /\  (
s  e.  S  /\  y  e.  ( B  \  {  .0.  } ) ) )  ->  s  e.  S )
1211adantr 465 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( S  e. 
~P ( Base `  M
)  /\  ( S  e.  V  /\  M  e. 
LMod ) )  /\  ( s  e.  S  /\  y  e.  ( B  \  {  .0.  }
) ) )  /\  ( g  e.  ( B  ^m  ( S 
\  { s } ) )  /\  (
g finSupp  .0.  /\  ( y ( .s `  M
) s )  =  ( g ( linC  `  M ) ( S 
\  { s } ) ) ) ) )  ->  s  e.  S )
13 simprl 755 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( S  e. 
~P ( Base `  M
)  /\  ( S  e.  V  /\  M  e. 
LMod ) )  /\  ( s  e.  S  /\  y  e.  ( B  \  {  .0.  }
) ) )  /\  ( g  e.  ( B  ^m  ( S 
\  { s } ) )  /\  (
g finSupp  .0.  /\  ( y ( .s `  M
) s )  =  ( g ( linC  `  M ) ( S 
\  { s } ) ) ) ) )  ->  g  e.  ( B  ^m  ( S  \  { s } ) ) )
1410, 12, 133jca 1168 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( S  e. 
~P ( Base `  M
)  /\  ( S  e.  V  /\  M  e. 
LMod ) )  /\  ( s  e.  S  /\  y  e.  ( B  \  {  .0.  }
) ) )  /\  ( g  e.  ( B  ^m  ( S 
\  { s } ) )  /\  (
g finSupp  .0.  /\  ( y ( .s `  M
) s )  =  ( g ( linC  `  M ) ( S 
\  { s } ) ) ) ) )  ->  ( y  e.  B  /\  s  e.  S  /\  g  e.  ( B  ^m  ( S  \  { s } ) ) ) )
15 simprrl 763 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( S  e. 
~P ( Base `  M
)  /\  ( S  e.  V  /\  M  e. 
LMod ) )  /\  ( s  e.  S  /\  y  e.  ( B  \  {  .0.  }
) ) )  /\  ( g  e.  ( B  ^m  ( S 
\  { s } ) )  /\  (
g finSupp  .0.  /\  ( y ( .s `  M
) s )  =  ( g ( linC  `  M ) ( S 
\  { s } ) ) ) ) )  ->  g finSupp  .0.  )
16 eqid 2443 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( Base `  M )  =  (
Base `  M )
17 lindslinind.r . . . . . . . . . . . . . . . . . . . . . . . 24  |-  R  =  (Scalar `  M )
18 lindslinind.b . . . . . . . . . . . . . . . . . . . . . . . 24  |-  B  =  ( Base `  R
)
19 lindslinind.0 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  .0.  =  ( 0g `  R )
20 lindslinind.z . . . . . . . . . . . . . . . . . . . . . . . 24  |-  Z  =  ( 0g `  M
)
21 eqid 2443 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( invg `  R )  =  ( invg `  R )
22 eqid 2443 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( z  e.  S  |->  if ( z  =  s ,  ( ( invg `  R ) `  y
) ,  ( g `
 z ) ) )  =  ( z  e.  S  |->  if ( z  =  s ,  ( ( invg `  R ) `  y
) ,  ( g `
 z ) ) )
2316, 17, 18, 19, 20, 21, 22lincext2 30994 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( M  e.  LMod  /\  S  e.  ~P ( Base `  M ) )  /\  ( y  e.  B  /\  s  e.  S  /\  g  e.  ( B  ^m  ( S  \  { s } ) ) )  /\  g finSupp  .0.  )  ->  (
z  e.  S  |->  if ( z  =  s ,  ( ( invg `  R ) `
 y ) ,  ( g `  z
) ) ) finSupp  .0.  )
246, 14, 15, 23syl3anc 1218 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( S  e. 
~P ( Base `  M
)  /\  ( S  e.  V  /\  M  e. 
LMod ) )  /\  ( s  e.  S  /\  y  e.  ( B  \  {  .0.  }
) ) )  /\  ( g  e.  ( B  ^m  ( S 
\  { s } ) )  /\  (
g finSupp  .0.  /\  ( y ( .s `  M
) s )  =  ( g ( linC  `  M ) ( S 
\  { s } ) ) ) ) )  ->  ( z  e.  S  |->  if ( z  =  s ,  ( ( invg `  R ) `  y
) ,  ( g `
 z ) ) ) finSupp  .0.  )
254adantr 465 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( S  e.  ~P ( Base `  M )  /\  ( S  e.  V  /\  M  e.  LMod ) )  /\  (
s  e.  S  /\  y  e.  ( B  \  {  .0.  } ) ) )  ->  ( S  e.  ~P ( Base `  M )  /\  M  e.  LMod ) )
2625ancomd 451 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( S  e.  ~P ( Base `  M )  /\  ( S  e.  V  /\  M  e.  LMod ) )  /\  (
s  e.  S  /\  y  e.  ( B  \  {  .0.  } ) ) )  ->  ( M  e.  LMod  /\  S  e.  ~P ( Base `  M
) ) )
2726adantr 465 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( S  e. 
~P ( Base `  M
)  /\  ( S  e.  V  /\  M  e. 
LMod ) )  /\  ( s  e.  S  /\  y  e.  ( B  \  {  .0.  }
) ) )  /\  ( g  e.  ( B  ^m  ( S 
\  { s } ) )  /\  (
g finSupp  .0.  /\  ( y ( .s `  M
) s )  =  ( g ( linC  `  M ) ( S 
\  { s } ) ) ) ) )  ->  ( M  e.  LMod  /\  S  e.  ~P ( Base `  M
) ) )
2816, 17, 18, 19, 20, 21, 22lincext1 30993 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( M  e.  LMod  /\  S  e.  ~P ( Base `  M ) )  /\  ( y  e.  B  /\  s  e.  S  /\  g  e.  ( B  ^m  ( S  \  { s } ) ) ) )  ->  ( z  e.  S  |->  if ( z  =  s ,  ( ( invg `  R ) `  y
) ,  ( g `
 z ) ) )  e.  ( B  ^m  S ) )
2927, 14, 28syl2anc 661 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( S  e. 
~P ( Base `  M
)  /\  ( S  e.  V  /\  M  e. 
LMod ) )  /\  ( s  e.  S  /\  y  e.  ( B  \  {  .0.  }
) ) )  /\  ( g  e.  ( B  ^m  ( S 
\  { s } ) )  /\  (
g finSupp  .0.  /\  ( y ( .s `  M
) s )  =  ( g ( linC  `  M ) ( S 
\  { s } ) ) ) ) )  ->  ( z  e.  S  |->  if ( z  =  s ,  ( ( invg `  R ) `  y
) ,  ( g `
 z ) ) )  e.  ( B  ^m  S ) )
30 breq1 4300 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( f  =  ( z  e.  S  |->  if ( z  =  s ,  ( ( invg `  R ) `  y
) ,  ( g `
 z ) ) )  ->  ( f finSupp  .0.  <->  ( z  e.  S  |->  if ( z  =  s ,  ( ( invg `  R ) `
 y ) ,  ( g `  z
) ) ) finSupp  .0.  ) )
31 oveq1 6103 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( f  =  ( z  e.  S  |->  if ( z  =  s ,  ( ( invg `  R ) `  y
) ,  ( g `
 z ) ) )  ->  ( f
( linC  `  M ) S )  =  ( ( z  e.  S  |->  if ( z  =  s ,  ( ( invg `  R
) `  y ) ,  ( g `  z ) ) ) ( linC  `  M ) S ) )
3231eqeq1d 2451 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( f  =  ( z  e.  S  |->  if ( z  =  s ,  ( ( invg `  R ) `  y
) ,  ( g `
 z ) ) )  ->  ( (
f ( linC  `  M
) S )  =  Z  <->  ( ( z  e.  S  |->  if ( z  =  s ,  ( ( invg `  R ) `  y
) ,  ( g `
 z ) ) ) ( linC  `  M
) S )  =  Z ) )
3330, 32anbi12d 710 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( f  =  ( z  e.  S  |->  if ( z  =  s ,  ( ( invg `  R ) `  y
) ,  ( g `
 z ) ) )  ->  ( (
f finSupp  .0.  /\  ( f ( linC  `  M ) S )  =  Z )  <->  ( ( z  e.  S  |->  if ( z  =  s ,  ( ( invg `  R ) `  y
) ,  ( g `
 z ) ) ) finSupp  .0.  /\  (
( z  e.  S  |->  if ( z  =  s ,  ( ( invg `  R
) `  y ) ,  ( g `  z ) ) ) ( linC  `  M ) S )  =  Z ) ) )
34 fveq1 5695 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( f  =  ( z  e.  S  |->  if ( z  =  s ,  ( ( invg `  R ) `  y
) ,  ( g `
 z ) ) )  ->  ( f `  x )  =  ( ( z  e.  S  |->  if ( z  =  s ,  ( ( invg `  R
) `  y ) ,  ( g `  z ) ) ) `
 x ) )
3534eqeq1d 2451 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( f  =  ( z  e.  S  |->  if ( z  =  s ,  ( ( invg `  R ) `  y
) ,  ( g `
 z ) ) )  ->  ( (
f `  x )  =  .0.  <->  ( ( z  e.  S  |->  if ( z  =  s ,  ( ( invg `  R ) `  y
) ,  ( g `
 z ) ) ) `  x )  =  .0.  ) )
3635ralbidv 2740 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( f  =  ( z  e.  S  |->  if ( z  =  s ,  ( ( invg `  R ) `  y
) ,  ( g `
 z ) ) )  ->  ( A. x  e.  S  (
f `  x )  =  .0.  <->  A. x  e.  S  ( ( z  e.  S  |->  if ( z  =  s ,  ( ( invg `  R ) `  y
) ,  ( g `
 z ) ) ) `  x )  =  .0.  ) )
3733, 36imbi12d 320 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( f  =  ( z  e.  S  |->  if ( z  =  s ,  ( ( invg `  R ) `  y
) ,  ( g `
 z ) ) )  ->  ( (
( f finSupp  .0.  /\  (
f ( linC  `  M
) S )  =  Z )  ->  A. x  e.  S  ( f `  x )  =  .0.  )  <->  ( ( ( z  e.  S  |->  if ( z  =  s ,  ( ( invg `  R ) `
 y ) ,  ( g `  z
) ) ) finSupp  .0.  /\  ( ( z  e.  S  |->  if ( z  =  s ,  ( ( invg `  R ) `  y
) ,  ( g `
 z ) ) ) ( linC  `  M
) S )  =  Z )  ->  A. x  e.  S  ( (
z  e.  S  |->  if ( z  =  s ,  ( ( invg `  R ) `
 y ) ,  ( g `  z
) ) ) `  x )  =  .0.  ) ) )
3837rspcv 3074 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( z  e.  S  |->  if ( z  =  s ,  ( ( invg `  R ) `
 y ) ,  ( g `  z
) ) )  e.  ( B  ^m  S
)  ->  ( A. f  e.  ( B  ^m  S ) ( ( f finSupp  .0.  /\  (
f ( linC  `  M
) S )  =  Z )  ->  A. x  e.  S  ( f `  x )  =  .0.  )  ->  ( (
( z  e.  S  |->  if ( z  =  s ,  ( ( invg `  R
) `  y ) ,  ( g `  z ) ) ) finSupp  .0.  /\  ( ( z  e.  S  |->  if ( z  =  s ,  ( ( invg `  R ) `  y
) ,  ( g `
 z ) ) ) ( linC  `  M
) S )  =  Z )  ->  A. x  e.  S  ( (
z  e.  S  |->  if ( z  =  s ,  ( ( invg `  R ) `
 y ) ,  ( g `  z
) ) ) `  x )  =  .0.  ) ) )
3929, 38syl 16 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( S  e. 
~P ( Base `  M
)  /\  ( S  e.  V  /\  M  e. 
LMod ) )  /\  ( s  e.  S  /\  y  e.  ( B  \  {  .0.  }
) ) )  /\  ( g  e.  ( B  ^m  ( S 
\  { s } ) )  /\  (
g finSupp  .0.  /\  ( y ( .s `  M
) s )  =  ( g ( linC  `  M ) ( S 
\  { s } ) ) ) ) )  ->  ( A. f  e.  ( B  ^m  S ) ( ( f finSupp  .0.  /\  (
f ( linC  `  M
) S )  =  Z )  ->  A. x  e.  S  ( f `  x )  =  .0.  )  ->  ( (
( z  e.  S  |->  if ( z  =  s ,  ( ( invg `  R
) `  y ) ,  ( g `  z ) ) ) finSupp  .0.  /\  ( ( z  e.  S  |->  if ( z  =  s ,  ( ( invg `  R ) `  y
) ,  ( g `
 z ) ) ) ( linC  `  M
) S )  =  Z )  ->  A. x  e.  S  ( (
z  e.  S  |->  if ( z  =  s ,  ( ( invg `  R ) `
 y ) ,  ( g `  z
) ) ) `  x )  =  .0.  ) ) )
4039exp4a 606 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( S  e. 
~P ( Base `  M
)  /\  ( S  e.  V  /\  M  e. 
LMod ) )  /\  ( s  e.  S  /\  y  e.  ( B  \  {  .0.  }
) ) )  /\  ( g  e.  ( B  ^m  ( S 
\  { s } ) )  /\  (
g finSupp  .0.  /\  ( y ( .s `  M
) s )  =  ( g ( linC  `  M ) ( S 
\  { s } ) ) ) ) )  ->  ( A. f  e.  ( B  ^m  S ) ( ( f finSupp  .0.  /\  (
f ( linC  `  M
) S )  =  Z )  ->  A. x  e.  S  ( f `  x )  =  .0.  )  ->  ( (
z  e.  S  |->  if ( z  =  s ,  ( ( invg `  R ) `
 y ) ,  ( g `  z
) ) ) finSupp  .0.  ->  ( ( ( z  e.  S  |->  if ( z  =  s ,  ( ( invg `  R ) `  y
) ,  ( g `
 z ) ) ) ( linC  `  M
) S )  =  Z  ->  A. x  e.  S  ( (
z  e.  S  |->  if ( z  =  s ,  ( ( invg `  R ) `
 y ) ,  ( g `  z
) ) ) `  x )  =  .0.  ) ) ) )
4124, 40mpid 41 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( S  e. 
~P ( Base `  M
)  /\  ( S  e.  V  /\  M  e. 
LMod ) )  /\  ( s  e.  S  /\  y  e.  ( B  \  {  .0.  }
) ) )  /\  ( g  e.  ( B  ^m  ( S 
\  { s } ) )  /\  (
g finSupp  .0.  /\  ( y ( .s `  M
) s )  =  ( g ( linC  `  M ) ( S 
\  { s } ) ) ) ) )  ->  ( A. f  e.  ( B  ^m  S ) ( ( f finSupp  .0.  /\  (
f ( linC  `  M
) S )  =  Z )  ->  A. x  e.  S  ( f `  x )  =  .0.  )  ->  ( (
( z  e.  S  |->  if ( z  =  s ,  ( ( invg `  R
) `  y ) ,  ( g `  z ) ) ) ( linC  `  M ) S )  =  Z  ->  A. x  e.  S  ( ( z  e.  S  |->  if ( z  =  s ,  ( ( invg `  R ) `  y
) ,  ( g `
 z ) ) ) `  x )  =  .0.  ) ) )
42 simprr 756 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( S  e. 
~P ( Base `  M
)  /\  ( S  e.  V  /\  M  e. 
LMod ) )  /\  ( s  e.  S  /\  y  e.  ( B  \  {  .0.  }
) ) )  /\  ( g  e.  ( B  ^m  ( S 
\  { s } ) )  /\  (
g finSupp  .0.  /\  ( y ( .s `  M
) s )  =  ( g ( linC  `  M ) ( S 
\  { s } ) ) ) ) )  ->  ( g finSupp  .0. 
/\  ( y ( .s `  M ) s )  =  ( g ( linC  `  M
) ( S  \  { s } ) ) ) )
4316, 17, 18, 19, 20, 21, 22lincext3 30995 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( M  e.  LMod  /\  S  e.  ~P ( Base `  M ) )  /\  ( y  e.  B  /\  s  e.  S  /\  g  e.  ( B  ^m  ( S  \  { s } ) ) )  /\  ( g finSupp  .0.  /\  (
y ( .s `  M ) s )  =  ( g ( linC  `  M ) ( S 
\  { s } ) ) ) )  ->  ( ( z  e.  S  |->  if ( z  =  s ,  ( ( invg `  R ) `  y
) ,  ( g `
 z ) ) ) ( linC  `  M
) S )  =  Z )
446, 14, 42, 43syl3anc 1218 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( S  e. 
~P ( Base `  M
)  /\  ( S  e.  V  /\  M  e. 
LMod ) )  /\  ( s  e.  S  /\  y  e.  ( B  \  {  .0.  }
) ) )  /\  ( g  e.  ( B  ^m  ( S 
\  { s } ) )  /\  (
g finSupp  .0.  /\  ( y ( .s `  M
) s )  =  ( g ( linC  `  M ) ( S 
\  { s } ) ) ) ) )  ->  ( (
z  e.  S  |->  if ( z  =  s ,  ( ( invg `  R ) `
 y ) ,  ( g `  z
) ) ) ( linC  `  M ) S )  =  Z )
45 fveq2 5696 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( x  =  s  ->  (
( z  e.  S  |->  if ( z  =  s ,  ( ( invg `  R
) `  y ) ,  ( g `  z ) ) ) `
 x )  =  ( ( z  e.  S  |->  if ( z  =  s ,  ( ( invg `  R ) `  y
) ,  ( g `
 z ) ) ) `  s ) )
4645eqeq1d 2451 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( x  =  s  ->  (
( ( z  e.  S  |->  if ( z  =  s ,  ( ( invg `  R ) `  y
) ,  ( g `
 z ) ) ) `  x )  =  .0.  <->  ( (
z  e.  S  |->  if ( z  =  s ,  ( ( invg `  R ) `
 y ) ,  ( g `  z
) ) ) `  s )  =  .0.  ) )
4746rspcv 3074 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( s  e.  S  ->  ( A. x  e.  S  ( ( z  e.  S  |->  if ( z  =  s ,  ( ( invg `  R ) `  y
) ,  ( g `
 z ) ) ) `  x )  =  .0.  ->  (
( z  e.  S  |->  if ( z  =  s ,  ( ( invg `  R
) `  y ) ,  ( g `  z ) ) ) `
 s )  =  .0.  ) )
4812, 47syl 16 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( S  e. 
~P ( Base `  M
)  /\  ( S  e.  V  /\  M  e. 
LMod ) )  /\  ( s  e.  S  /\  y  e.  ( B  \  {  .0.  }
) ) )  /\  ( g  e.  ( B  ^m  ( S 
\  { s } ) )  /\  (
g finSupp  .0.  /\  ( y ( .s `  M
) s )  =  ( g ( linC  `  M ) ( S 
\  { s } ) ) ) ) )  ->  ( A. x  e.  S  (
( z  e.  S  |->  if ( z  =  s ,  ( ( invg `  R
) `  y ) ,  ( g `  z ) ) ) `
 x )  =  .0.  ->  ( (
z  e.  S  |->  if ( z  =  s ,  ( ( invg `  R ) `
 y ) ,  ( g `  z
) ) ) `  s )  =  .0.  ) )
49 eqidd 2444 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( S  e.  ~P ( Base `  M )  /\  ( S  e.  V  /\  M  e.  LMod ) )  /\  (
s  e.  S  /\  y  e.  ( B  \  {  .0.  } ) ) )  ->  (
z  e.  S  |->  if ( z  =  s ,  ( ( invg `  R ) `
 y ) ,  ( g `  z
) ) )  =  ( z  e.  S  |->  if ( z  =  s ,  ( ( invg `  R
) `  y ) ,  ( g `  z ) ) ) )
50 iftrue 3802 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( z  =  s  ->  if ( z  =  s ,  ( ( invg `  R ) `
 y ) ,  ( g `  z
) )  =  ( ( invg `  R ) `  y
) )
5150adantl 466 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( S  e. 
~P ( Base `  M
)  /\  ( S  e.  V  /\  M  e. 
LMod ) )  /\  ( s  e.  S  /\  y  e.  ( B  \  {  .0.  }
) ) )  /\  z  =  s )  ->  if ( z  =  s ,  ( ( invg `  R
) `  y ) ,  ( g `  z ) )  =  ( ( invg `  R ) `  y
) )
52 fvex 5706 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( invg `  R
) `  y )  e.  _V
5352a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( S  e.  ~P ( Base `  M )  /\  ( S  e.  V  /\  M  e.  LMod ) )  /\  (
s  e.  S  /\  y  e.  ( B  \  {  .0.  } ) ) )  ->  (
( invg `  R ) `  y
)  e.  _V )
5449, 51, 11, 53fvmptd 5784 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( S  e.  ~P ( Base `  M )  /\  ( S  e.  V  /\  M  e.  LMod ) )  /\  (
s  e.  S  /\  y  e.  ( B  \  {  .0.  } ) ) )  ->  (
( z  e.  S  |->  if ( z  =  s ,  ( ( invg `  R
) `  y ) ,  ( g `  z ) ) ) `
 s )  =  ( ( invg `  R ) `  y
) )
5554adantr 465 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( S  e. 
~P ( Base `  M
)  /\  ( S  e.  V  /\  M  e. 
LMod ) )  /\  ( s  e.  S  /\  y  e.  ( B  \  {  .0.  }
) ) )  /\  ( g  e.  ( B  ^m  ( S 
\  { s } ) )  /\  (
g finSupp  .0.  /\  ( y ( .s `  M
) s )  =  ( g ( linC  `  M ) ( S 
\  { s } ) ) ) ) )  ->  ( (
z  e.  S  |->  if ( z  =  s ,  ( ( invg `  R ) `
 y ) ,  ( g `  z
) ) ) `  s )  =  ( ( invg `  R ) `  y
) )
5655eqeq1d 2451 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( S  e. 
~P ( Base `  M
)  /\  ( S  e.  V  /\  M  e. 
LMod ) )  /\  ( s  e.  S  /\  y  e.  ( B  \  {  .0.  }
) ) )  /\  ( g  e.  ( B  ^m  ( S 
\  { s } ) )  /\  (
g finSupp  .0.  /\  ( y ( .s `  M
) s )  =  ( g ( linC  `  M ) ( S 
\  { s } ) ) ) ) )  ->  ( (
( z  e.  S  |->  if ( z  =  s ,  ( ( invg `  R
) `  y ) ,  ( g `  z ) ) ) `
 s )  =  .0.  <->  ( ( invg `  R ) `
 y )  =  .0.  ) )
5717lmodfgrp 16962 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( M  e.  LMod  ->  R  e. 
Grp )
5818, 19, 21grpinvnzcl 15603 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( ( R  e.  Grp  /\  y  e.  ( B  \  {  .0.  } ) )  ->  ( ( invg `  R ) `
 y )  e.  ( B  \  {  .0.  } ) )
59 eldif 3343 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( ( ( invg `  R ) `  y
)  e.  ( B 
\  {  .0.  }
)  <->  ( ( ( invg `  R
) `  y )  e.  B  /\  -.  (
( invg `  R ) `  y
)  e.  {  .0.  } ) )
6052elsnc 3906 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  |-  ( ( ( invg `  R ) `  y
)  e.  {  .0.  }  <-> 
( ( invg `  R ) `  y
)  =  .0.  )
61 pm2.21 108 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  |-  ( -.  ( ( invg `  R ) `  y
)  =  .0.  ->  ( ( ( invg `  R ) `  y
)  =  .0.  ->  ( S  e.  V  -> 
( s  e.  S  ->  ( S  e.  ~P ( Base `  M )  ->  -.  ( y ( .s `  M ) s )  =  ( g ( linC  `  M
) ( S  \  { s } ) ) ) ) ) ) )
6261com25 91 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  |-  ( -.  ( ( invg `  R ) `  y
)  =  .0.  ->  ( S  e.  ~P ( Base `  M )  -> 
( S  e.  V  ->  ( s  e.  S  ->  ( ( ( invg `  R ) `
 y )  =  .0.  ->  -.  (
y ( .s `  M ) s )  =  ( g ( linC  `  M ) ( S 
\  { s } ) ) ) ) ) ) )
6360, 62sylnbi 306 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  |-  ( -.  ( ( invg `  R ) `  y
)  e.  {  .0.  }  ->  ( S  e. 
~P ( Base `  M
)  ->  ( S  e.  V  ->  ( s  e.  S  ->  (
( ( invg `  R ) `  y
)  =  .0.  ->  -.  ( y ( .s
`  M ) s )  =  ( g ( linC  `  M )
( S  \  {
s } ) ) ) ) ) ) )
6463adantl 466 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( ( ( ( invg `  R ) `  y
)  e.  B  /\  -.  ( ( invg `  R ) `  y
)  e.  {  .0.  } )  ->  ( S  e.  ~P ( Base `  M
)  ->  ( S  e.  V  ->  ( s  e.  S  ->  (
( ( invg `  R ) `  y
)  =  .0.  ->  -.  ( y ( .s
`  M ) s )  =  ( g ( linC  `  M )
( S  \  {
s } ) ) ) ) ) ) )
6559, 64sylbi 195 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( ( ( invg `  R ) `  y
)  e.  ( B 
\  {  .0.  }
)  ->  ( S  e.  ~P ( Base `  M
)  ->  ( S  e.  V  ->  ( s  e.  S  ->  (
( ( invg `  R ) `  y
)  =  .0.  ->  -.  ( y ( .s
`  M ) s )  =  ( g ( linC  `  M )
( S  \  {
s } ) ) ) ) ) ) )
6658, 65syl 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( ( R  e.  Grp  /\  y  e.  ( B  \  {  .0.  } ) )  ->  ( S  e.  ~P ( Base `  M
)  ->  ( S  e.  V  ->  ( s  e.  S  ->  (
( ( invg `  R ) `  y
)  =  .0.  ->  -.  ( y ( .s
`  M ) s )  =  ( g ( linC  `  M )
( S  \  {
s } ) ) ) ) ) ) )
6766ex 434 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( R  e.  Grp  ->  (
y  e.  ( B 
\  {  .0.  }
)  ->  ( S  e.  ~P ( Base `  M
)  ->  ( S  e.  V  ->  ( s  e.  S  ->  (
( ( invg `  R ) `  y
)  =  .0.  ->  -.  ( y ( .s
`  M ) s )  =  ( g ( linC  `  M )
( S  \  {
s } ) ) ) ) ) ) ) )
6857, 67syl 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( M  e.  LMod  ->  ( y  e.  ( B  \  {  .0.  } )  -> 
( S  e.  ~P ( Base `  M )  ->  ( S  e.  V  ->  ( s  e.  S  ->  ( ( ( invg `  R ) `
 y )  =  .0.  ->  -.  (
y ( .s `  M ) s )  =  ( g ( linC  `  M ) ( S 
\  { s } ) ) ) ) ) ) ) )
6968com24 87 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( M  e.  LMod  ->  ( S  e.  V  ->  ( S  e.  ~P ( Base `  M )  -> 
( y  e.  ( B  \  {  .0.  } )  ->  ( s  e.  S  ->  ( ( ( invg `  R ) `  y
)  =  .0.  ->  -.  ( y ( .s
`  M ) s )  =  ( g ( linC  `  M )
( S  \  {
s } ) ) ) ) ) ) ) )
7069impcom 430 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( S  e.  V  /\  M  e.  LMod )  -> 
( S  e.  ~P ( Base `  M )  ->  ( y  e.  ( B  \  {  .0.  } )  ->  ( s  e.  S  ->  ( ( ( invg `  R ) `  y
)  =  .0.  ->  -.  ( y ( .s
`  M ) s )  =  ( g ( linC  `  M )
( S  \  {
s } ) ) ) ) ) ) )
7170impcom 430 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( S  e.  ~P ( Base `  M )  /\  ( S  e.  V  /\  M  e.  LMod ) )  ->  (
y  e.  ( B 
\  {  .0.  }
)  ->  ( s  e.  S  ->  ( ( ( invg `  R ) `  y
)  =  .0.  ->  -.  ( y ( .s
`  M ) s )  =  ( g ( linC  `  M )
( S  \  {
s } ) ) ) ) ) )
7271com13 80 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( s  e.  S  ->  (
y  e.  ( B 
\  {  .0.  }
)  ->  ( ( S  e.  ~P ( Base `  M )  /\  ( S  e.  V  /\  M  e.  LMod ) )  ->  (
( ( invg `  R ) `  y
)  =  .0.  ->  -.  ( y ( .s
`  M ) s )  =  ( g ( linC  `  M )
( S  \  {
s } ) ) ) ) ) )
7372imp 429 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( s  e.  S  /\  y  e.  ( B  \  {  .0.  } ) )  ->  ( ( S  e.  ~P ( Base `  M )  /\  ( S  e.  V  /\  M  e.  LMod ) )  ->  (
( ( invg `  R ) `  y
)  =  .0.  ->  -.  ( y ( .s
`  M ) s )  =  ( g ( linC  `  M )
( S  \  {
s } ) ) ) ) )
7473impcom 430 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( S  e.  ~P ( Base `  M )  /\  ( S  e.  V  /\  M  e.  LMod ) )  /\  (
s  e.  S  /\  y  e.  ( B  \  {  .0.  } ) ) )  ->  (
( ( invg `  R ) `  y
)  =  .0.  ->  -.  ( y ( .s
`  M ) s )  =  ( g ( linC  `  M )
( S  \  {
s } ) ) ) )
7574adantr 465 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( S  e. 
~P ( Base `  M
)  /\  ( S  e.  V  /\  M  e. 
LMod ) )  /\  ( s  e.  S  /\  y  e.  ( B  \  {  .0.  }
) ) )  /\  ( g  e.  ( B  ^m  ( S 
\  { s } ) )  /\  (
g finSupp  .0.  /\  ( y ( .s `  M
) s )  =  ( g ( linC  `  M ) ( S 
\  { s } ) ) ) ) )  ->  ( (
( invg `  R ) `  y
)  =  .0.  ->  -.  ( y ( .s
`  M ) s )  =  ( g ( linC  `  M )
( S  \  {
s } ) ) ) )
7656, 75sylbid 215 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( S  e. 
~P ( Base `  M
)  /\  ( S  e.  V  /\  M  e. 
LMod ) )  /\  ( s  e.  S  /\  y  e.  ( B  \  {  .0.  }
) ) )  /\  ( g  e.  ( B  ^m  ( S 
\  { s } ) )  /\  (
g finSupp  .0.  /\  ( y ( .s `  M
) s )  =  ( g ( linC  `  M ) ( S 
\  { s } ) ) ) ) )  ->  ( (
( z  e.  S  |->  if ( z  =  s ,  ( ( invg `  R
) `  y ) ,  ( g `  z ) ) ) `
 s )  =  .0.  ->  -.  (
y ( .s `  M ) s )  =  ( g ( linC  `  M ) ( S 
\  { s } ) ) ) )
7748, 76syld 44 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( S  e. 
~P ( Base `  M
)  /\  ( S  e.  V  /\  M  e. 
LMod ) )  /\  ( s  e.  S  /\  y  e.  ( B  \  {  .0.  }
) ) )  /\  ( g  e.  ( B  ^m  ( S 
\  { s } ) )  /\  (
g finSupp  .0.  /\  ( y ( .s `  M
) s )  =  ( g ( linC  `  M ) ( S 
\  { s } ) ) ) ) )  ->  ( A. x  e.  S  (
( z  e.  S  |->  if ( z  =  s ,  ( ( invg `  R
) `  y ) ,  ( g `  z ) ) ) `
 x )  =  .0.  ->  -.  (
y ( .s `  M ) s )  =  ( g ( linC  `  M ) ( S 
\  { s } ) ) ) )
7844, 77embantd 54 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( S  e. 
~P ( Base `  M
)  /\  ( S  e.  V  /\  M  e. 
LMod ) )  /\  ( s  e.  S  /\  y  e.  ( B  \  {  .0.  }
) ) )  /\  ( g  e.  ( B  ^m  ( S 
\  { s } ) )  /\  (
g finSupp  .0.  /\  ( y ( .s `  M
) s )  =  ( g ( linC  `  M ) ( S 
\  { s } ) ) ) ) )  ->  ( (
( ( z  e.  S  |->  if ( z  =  s ,  ( ( invg `  R ) `  y
) ,  ( g `
 z ) ) ) ( linC  `  M
) S )  =  Z  ->  A. x  e.  S  ( (
z  e.  S  |->  if ( z  =  s ,  ( ( invg `  R ) `
 y ) ,  ( g `  z
) ) ) `  x )  =  .0.  )  ->  -.  (
y ( .s `  M ) s )  =  ( g ( linC  `  M ) ( S 
\  { s } ) ) ) )
7941, 78syld 44 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( S  e. 
~P ( Base `  M
)  /\  ( S  e.  V  /\  M  e. 
LMod ) )  /\  ( s  e.  S  /\  y  e.  ( B  \  {  .0.  }
) ) )  /\  ( g  e.  ( B  ^m  ( S 
\  { s } ) )  /\  (
g finSupp  .0.  /\  ( y ( .s `  M
) s )  =  ( g ( linC  `  M ) ( S 
\  { s } ) ) ) ) )  ->  ( A. f  e.  ( B  ^m  S ) ( ( f finSupp  .0.  /\  (
f ( linC  `  M
) S )  =  Z )  ->  A. x  e.  S  ( f `  x )  =  .0.  )  ->  -.  (
y ( .s `  M ) s )  =  ( g ( linC  `  M ) ( S 
\  { s } ) ) ) )
8079com12 31 . . . . . . . . . . . . . . . . . . 19  |-  ( A. f  e.  ( B  ^m  S ) ( ( f finSupp  .0.  /\  (
f ( linC  `  M
) S )  =  Z )  ->  A. x  e.  S  ( f `  x )  =  .0.  )  ->  ( (
( ( S  e. 
~P ( Base `  M
)  /\  ( S  e.  V  /\  M  e. 
LMod ) )  /\  ( s  e.  S  /\  y  e.  ( B  \  {  .0.  }
) ) )  /\  ( g  e.  ( B  ^m  ( S 
\  { s } ) )  /\  (
g finSupp  .0.  /\  ( y ( .s `  M
) s )  =  ( g ( linC  `  M ) ( S 
\  { s } ) ) ) ) )  ->  -.  (
y ( .s `  M ) s )  =  ( g ( linC  `  M ) ( S 
\  { s } ) ) ) )
8180expd 436 . . . . . . . . . . . . . . . . . 18  |-  ( A. f  e.  ( B  ^m  S ) ( ( f finSupp  .0.  /\  (
f ( linC  `  M
) S )  =  Z )  ->  A. x  e.  S  ( f `  x )  =  .0.  )  ->  ( (
( S  e.  ~P ( Base `  M )  /\  ( S  e.  V  /\  M  e.  LMod ) )  /\  (
s  e.  S  /\  y  e.  ( B  \  {  .0.  } ) ) )  ->  (
( g  e.  ( B  ^m  ( S 
\  { s } ) )  /\  (
g finSupp  .0.  /\  ( y ( .s `  M
) s )  =  ( g ( linC  `  M ) ( S 
\  { s } ) ) ) )  ->  -.  ( y
( .s `  M
) s )  =  ( g ( linC  `  M ) ( S 
\  { s } ) ) ) ) )
8281exp4c 608 . . . . . . . . . . . . . . . . 17  |-  ( A. f  e.  ( B  ^m  S ) ( ( f finSupp  .0.  /\  (
f ( linC  `  M
) S )  =  Z )  ->  A. x  e.  S  ( f `  x )  =  .0.  )  ->  ( S  e.  ~P ( Base `  M
)  ->  ( ( S  e.  V  /\  M  e.  LMod )  -> 
( ( s  e.  S  /\  y  e.  ( B  \  {  .0.  } ) )  -> 
( ( g  e.  ( B  ^m  ( S  \  { s } ) )  /\  (
g finSupp  .0.  /\  ( y ( .s `  M
) s )  =  ( g ( linC  `  M ) ( S 
\  { s } ) ) ) )  ->  -.  ( y
( .s `  M
) s )  =  ( g ( linC  `  M ) ( S 
\  { s } ) ) ) ) ) ) )
8382impcom 430 . . . . . . . . . . . . . . . 16  |-  ( ( S  e.  ~P ( Base `  M )  /\  A. f  e.  ( B  ^m  S ) ( ( f finSupp  .0.  /\  ( f ( linC  `  M ) S )  =  Z )  ->  A. x  e.  S  ( f `  x
)  =  .0.  )
)  ->  ( ( S  e.  V  /\  M  e.  LMod )  -> 
( ( s  e.  S  /\  y  e.  ( B  \  {  .0.  } ) )  -> 
( ( g  e.  ( B  ^m  ( S  \  { s } ) )  /\  (
g finSupp  .0.  /\  ( y ( .s `  M
) s )  =  ( g ( linC  `  M ) ( S 
\  { s } ) ) ) )  ->  -.  ( y
( .s `  M
) s )  =  ( g ( linC  `  M ) ( S 
\  { s } ) ) ) ) ) )
8483impcom 430 . . . . . . . . . . . . . . 15  |-  ( ( ( S  e.  V  /\  M  e.  LMod )  /\  ( S  e. 
~P ( Base `  M
)  /\  A. f  e.  ( B  ^m  S
) ( ( f finSupp  .0.  /\  ( f ( linC  `  M ) S )  =  Z )  ->  A. x  e.  S  ( f `  x
)  =  .0.  )
) )  ->  (
( s  e.  S  /\  y  e.  ( B  \  {  .0.  }
) )  ->  (
( g  e.  ( B  ^m  ( S 
\  { s } ) )  /\  (
g finSupp  .0.  /\  ( y ( .s `  M
) s )  =  ( g ( linC  `  M ) ( S 
\  { s } ) ) ) )  ->  -.  ( y
( .s `  M
) s )  =  ( g ( linC  `  M ) ( S 
\  { s } ) ) ) ) )
8584imp 429 . . . . . . . . . . . . . 14  |-  ( ( ( ( S  e.  V  /\  M  e. 
LMod )  /\  ( S  e.  ~P ( Base `  M )  /\  A. f  e.  ( B  ^m  S ) ( ( f finSupp  .0.  /\  ( f ( linC  `  M ) S )  =  Z )  ->  A. x  e.  S  ( f `  x
)  =  .0.  )
) )  /\  (
s  e.  S  /\  y  e.  ( B  \  {  .0.  } ) ) )  ->  (
( g  e.  ( B  ^m  ( S 
\  { s } ) )  /\  (
g finSupp  .0.  /\  ( y ( .s `  M
) s )  =  ( g ( linC  `  M ) ( S 
\  { s } ) ) ) )  ->  -.  ( y
( .s `  M
) s )  =  ( g ( linC  `  M ) ( S 
\  { s } ) ) ) )
8685expdimp 437 . . . . . . . . . . . . 13  |-  ( ( ( ( ( S  e.  V  /\  M  e.  LMod )  /\  ( S  e.  ~P ( Base `  M )  /\  A. f  e.  ( B  ^m  S ) ( ( f finSupp  .0.  /\  ( f ( linC  `  M ) S )  =  Z )  ->  A. x  e.  S  ( f `  x
)  =  .0.  )
) )  /\  (
s  e.  S  /\  y  e.  ( B  \  {  .0.  } ) ) )  /\  g  e.  ( B  ^m  ( S  \  { s } ) ) )  -> 
( ( g finSupp  .0.  /\  ( y ( .s
`  M ) s )  =  ( g ( linC  `  M )
( S  \  {
s } ) ) )  ->  -.  (
y ( .s `  M ) s )  =  ( g ( linC  `  M ) ( S 
\  { s } ) ) ) )
8786expd 436 . . . . . . . . . . . 12  |-  ( ( ( ( ( S  e.  V  /\  M  e.  LMod )  /\  ( S  e.  ~P ( Base `  M )  /\  A. f  e.  ( B  ^m  S ) ( ( f finSupp  .0.  /\  ( f ( linC  `  M ) S )  =  Z )  ->  A. x  e.  S  ( f `  x
)  =  .0.  )
) )  /\  (
s  e.  S  /\  y  e.  ( B  \  {  .0.  } ) ) )  /\  g  e.  ( B  ^m  ( S  \  { s } ) ) )  -> 
( g finSupp  .0.  ->  ( ( y ( .s
`  M ) s )  =  ( g ( linC  `  M )
( S  \  {
s } ) )  ->  -.  ( y
( .s `  M
) s )  =  ( g ( linC  `  M ) ( S 
\  { s } ) ) ) ) )
8887impcom 430 . . . . . . . . . . 11  |-  ( ( g finSupp  .0.  /\  (
( ( ( S  e.  V  /\  M  e.  LMod )  /\  ( S  e.  ~P ( Base `  M )  /\  A. f  e.  ( B  ^m  S ) ( ( f finSupp  .0.  /\  ( f ( linC  `  M ) S )  =  Z )  ->  A. x  e.  S  ( f `  x
)  =  .0.  )
) )  /\  (
s  e.  S  /\  y  e.  ( B  \  {  .0.  } ) ) )  /\  g  e.  ( B  ^m  ( S  \  { s } ) ) ) )  ->  ( ( y ( .s `  M
) s )  =  ( g ( linC  `  M ) ( S 
\  { s } ) )  ->  -.  ( y ( .s
`  M ) s )  =  ( g ( linC  `  M )
( S  \  {
s } ) ) ) )
8988pm2.01d 169 . . . . . . . . . 10  |-  ( ( g finSupp  .0.  /\  (
( ( ( S  e.  V  /\  M  e.  LMod )  /\  ( S  e.  ~P ( Base `  M )  /\  A. f  e.  ( B  ^m  S ) ( ( f finSupp  .0.  /\  ( f ( linC  `  M ) S )  =  Z )  ->  A. x  e.  S  ( f `  x
)  =  .0.  )
) )  /\  (
s  e.  S  /\  y  e.  ( B  \  {  .0.  } ) ) )  /\  g  e.  ( B  ^m  ( S  \  { s } ) ) ) )  ->  -.  ( y
( .s `  M
) s )  =  ( g ( linC  `  M ) ( S 
\  { s } ) ) )
9089olcd 393 . . . . . . . . 9  |-  ( ( g finSupp  .0.  /\  (
( ( ( S  e.  V  /\  M  e.  LMod )  /\  ( S  e.  ~P ( Base `  M )  /\  A. f  e.  ( B  ^m  S ) ( ( f finSupp  .0.  /\  ( f ( linC  `  M ) S )  =  Z )  ->  A. x  e.  S  ( f `  x
)  =  .0.  )
) )  /\  (
s  e.  S  /\  y  e.  ( B  \  {  .0.  } ) ) )  /\  g  e.  ( B  ^m  ( S  \  { s } ) ) ) )  ->  ( -.  g finSupp  .0. 
\/  -.  ( y
( .s `  M
) s )  =  ( g ( linC  `  M ) ( S 
\  { s } ) ) ) )
91 simpl 457 . . . . . . . . . 10  |-  ( ( -.  g finSupp  .0.  /\  (
( ( ( S  e.  V  /\  M  e.  LMod )  /\  ( S  e.  ~P ( Base `  M )  /\  A. f  e.  ( B  ^m  S ) ( ( f finSupp  .0.  /\  ( f ( linC  `  M ) S )  =  Z )  ->  A. x  e.  S  ( f `  x
)  =  .0.  )
) )  /\  (
s  e.  S  /\  y  e.  ( B  \  {  .0.  } ) ) )  /\  g  e.  ( B  ^m  ( S  \  { s } ) ) ) )  ->  -.  g finSupp  .0.  )
9291orcd 392 . . . . . . . . 9  |-  ( ( -.  g finSupp  .0.  /\  (
( ( ( S  e.  V  /\  M  e.  LMod )  /\  ( S  e.  ~P ( Base `  M )  /\  A. f  e.  ( B  ^m  S ) ( ( f finSupp  .0.  /\  ( f ( linC  `  M ) S )  =  Z )  ->  A. x  e.  S  ( f `  x
)  =  .0.  )
) )  /\  (
s  e.  S  /\  y  e.  ( B  \  {  .0.  } ) ) )  /\  g  e.  ( B  ^m  ( S  \  { s } ) ) ) )  ->  ( -.  g finSupp  .0. 
\/  -.  ( y
( .s `  M
) s )  =  ( g ( linC  `  M ) ( S 
\  { s } ) ) ) )
9390, 92pm2.61ian 788 . . . . . . . 8  |-  ( ( ( ( ( S  e.  V  /\  M  e.  LMod )  /\  ( S  e.  ~P ( Base `  M )  /\  A. f  e.  ( B  ^m  S ) ( ( f finSupp  .0.  /\  ( f ( linC  `  M ) S )  =  Z )  ->  A. x  e.  S  ( f `  x
)  =  .0.  )
) )  /\  (
s  e.  S  /\  y  e.  ( B  \  {  .0.  } ) ) )  /\  g  e.  ( B  ^m  ( S  \  { s } ) ) )  -> 
( -.  g finSupp  .0.  \/  -.  ( y ( .s `  M ) s )  =  ( g ( linC  `  M
) ( S  \  { s } ) ) ) )
9493ralrimiva 2804 . . . . . . 7  |-  ( ( ( ( S  e.  V  /\  M  e. 
LMod )  /\  ( S  e.  ~P ( Base `  M )  /\  A. f  e.  ( B  ^m  S ) ( ( f finSupp  .0.  /\  ( f ( linC  `  M ) S )  =  Z )  ->  A. x  e.  S  ( f `  x
)  =  .0.  )
) )  /\  (
s  e.  S  /\  y  e.  ( B  \  {  .0.  } ) ) )  ->  A. g  e.  ( B  ^m  ( S  \  { s } ) ) ( -.  g finSupp  .0.  \/  -.  ( y ( .s
`  M ) s )  =  ( g ( linC  `  M )
( S  \  {
s } ) ) ) )
95 ralnex 2730 . . . . . . . 8  |-  ( A. g  e.  ( B  ^m  ( S  \  {
s } ) )  -.  ( g finSupp  .0.  /\  ( y ( .s
`  M ) s )  =  ( g ( linC  `  M )
( S  \  {
s } ) ) )  <->  -.  E. g  e.  ( B  ^m  ( S  \  { s } ) ) ( g finSupp  .0.  /\  ( y ( .s `  M ) s )  =  ( g ( linC  `  M
) ( S  \  { s } ) ) ) )
96 ianor 488 . . . . . . . . 9  |-  ( -.  ( g finSupp  .0.  /\  ( y ( .s
`  M ) s )  =  ( g ( linC  `  M )
( S  \  {
s } ) ) )  <->  ( -.  g finSupp  .0. 
\/  -.  ( y
( .s `  M
) s )  =  ( g ( linC  `  M ) ( S 
\  { s } ) ) ) )
9796ralbii 2744 . . . . . . . 8  |-  ( A. g  e.  ( B  ^m  ( S  \  {
s } ) )  -.  ( g finSupp  .0.  /\  ( y ( .s
`  M ) s )  =  ( g ( linC  `  M )
( S  \  {
s } ) ) )  <->  A. g  e.  ( B  ^m  ( S 
\  { s } ) ) ( -.  g finSupp  .0.  \/  -.  ( y ( .s
`  M ) s )  =  ( g ( linC  `  M )
( S  \  {
s } ) ) ) )
9895, 97bitr3i 251 . . . . . . 7  |-  ( -. 
E. g  e.  ( B  ^m  ( S 
\  { s } ) ) ( g finSupp  .0.  /\  ( y ( .s `  M ) s )  =  ( g ( linC  `  M
) ( S  \  { s } ) ) )  <->  A. g  e.  ( B  ^m  ( S  \  { s } ) ) ( -.  g finSupp  .0.  \/  -.  ( y ( .s
`  M ) s )  =  ( g ( linC  `  M )
( S  \  {
s } ) ) ) )
9994, 98sylibr 212 . . . . . 6  |-  ( ( ( ( S  e.  V  /\  M  e. 
LMod )  /\  ( S  e.  ~P ( Base `  M )  /\  A. f  e.  ( B  ^m  S ) ( ( f finSupp  .0.  /\  ( f ( linC  `  M ) S )  =  Z )  ->  A. x  e.  S  ( f `  x
)  =  .0.  )
) )  /\  (
s  e.  S  /\  y  e.  ( B  \  {  .0.  } ) ) )  ->  -.  E. g  e.  ( B  ^m  ( S  \  { s } ) ) ( g finSupp  .0.  /\  ( y ( .s
`  M ) s )  =  ( g ( linC  `  M )
( S  \  {
s } ) ) ) )
10099intnand 907 . . . . 5  |-  ( ( ( ( S  e.  V  /\  M  e. 
LMod )  /\  ( S  e.  ~P ( Base `  M )  /\  A. f  e.  ( B  ^m  S ) ( ( f finSupp  .0.  /\  ( f ( linC  `  M ) S )  =  Z )  ->  A. x  e.  S  ( f `  x
)  =  .0.  )
) )  /\  (
s  e.  S  /\  y  e.  ( B  \  {  .0.  } ) ) )  ->  -.  ( ( y ( .s `  M ) s )  e.  (
Base `  M )  /\  E. g  e.  ( B  ^m  ( S 
\  { s } ) ) ( g finSupp  .0.  /\  ( y ( .s `  M ) s )  =  ( g ( linC  `  M
) ( S  \  { s } ) ) ) ) )
1013ad2antrr 725 . . . . . . 7  |-  ( ( ( ( S  e.  V  /\  M  e. 
LMod )  /\  ( S  e.  ~P ( Base `  M )  /\  A. f  e.  ( B  ^m  S ) ( ( f finSupp  .0.  /\  ( f ( linC  `  M ) S )  =  Z )  ->  A. x  e.  S  ( f `  x
)  =  .0.  )
) )  /\  (
s  e.  S  /\  y  e.  ( B  \  {  .0.  } ) ) )  ->  M  e.  LMod )
1021ssdifssd 3499 . . . . . . . . . 10  |-  ( S  e.  ~P ( Base `  M )  ->  ( S  \  { s } )  C_  ( Base `  M ) )
103102ad2antrl 727 . . . . . . . . 9  |-  ( ( ( S  e.  V  /\  M  e.  LMod )  /\  ( S  e. 
~P ( Base `  M
)  /\  A. f  e.  ( B  ^m  S
) ( ( f finSupp  .0.  /\  ( f ( linC  `  M ) S )  =  Z )  ->  A. x  e.  S  ( f `  x
)  =  .0.  )
) )  ->  ( S  \  { s } )  C_  ( Base `  M ) )
104 difexg 4445 . . . . . . . . . . 11  |-  ( S  e.  V  ->  ( S  \  { s } )  e.  _V )
105104ad2antrr 725 . . . . . . . . . 10  |-  ( ( ( S  e.  V  /\  M  e.  LMod )  /\  ( S  e. 
~P ( Base `  M
)  /\  A. f  e.  ( B  ^m  S
) ( ( f finSupp  .0.  /\  ( f ( linC  `  M ) S )  =  Z )  ->  A. x  e.  S  ( f `  x
)  =  .0.  )
) )  ->  ( S  \  { s } )  e.  _V )
106 elpwg 3873 . . . . . . . . . 10  |-  ( ( S  \  { s } )  e.  _V  ->  ( ( S  \  { s } )  e.  ~P ( Base `  M )  <->  ( S  \  { s } ) 
C_  ( Base `  M
) ) )
107105, 106syl 16 . . . . . . . . 9  |-  ( ( ( S  e.  V  /\  M  e.  LMod )  /\  ( S  e. 
~P ( Base `  M
)  /\  A. f  e.  ( B  ^m  S
) ( ( f finSupp  .0.  /\  ( f ( linC  `  M ) S )  =  Z )  ->  A. x  e.  S  ( f `  x
)  =  .0.  )
) )  ->  (
( S  \  {
s } )  e. 
~P ( Base `  M
)  <->  ( S  \  { s } ) 
C_  ( Base `  M
) ) )
108103, 107mpbird 232 . . . . . . . 8  |-  ( ( ( S  e.  V  /\  M  e.  LMod )  /\  ( S  e. 
~P ( Base `  M
)  /\  A. f  e.  ( B  ^m  S
) ( ( f finSupp  .0.  /\  ( f ( linC  `  M ) S )  =  Z )  ->  A. x  e.  S  ( f `  x
)  =  .0.  )
) )  ->  ( S  \  { s } )  e.  ~P ( Base `  M ) )
109108adantr 465 . . . . . . 7  |-  ( ( ( ( S  e.  V  /\  M  e. 
LMod )  /\  ( S  e.  ~P ( Base `  M )  /\  A. f  e.  ( B  ^m  S ) ( ( f finSupp  .0.  /\  ( f ( linC  `  M ) S )  =  Z )  ->  A. x  e.  S  ( f `  x
)  =  .0.  )
) )  /\  (
s  e.  S  /\  y  e.  ( B  \  {  .0.  } ) ) )  ->  ( S  \  { s } )  e.  ~P ( Base `  M ) )
11016lspeqlco 30978 . . . . . . . . 9  |-  ( ( M  e.  LMod  /\  ( S  \  { s } )  e.  ~P ( Base `  M ) )  ->  ( M LinCo  ( S  \  { s } ) )  =  ( ( LSpan `  M ) `  ( S  \  {
s } ) ) )
111110eleq2d 2510 . . . . . . . 8  |-  ( ( M  e.  LMod  /\  ( S  \  { s } )  e.  ~P ( Base `  M ) )  ->  ( ( y ( .s `  M
) s )  e.  ( M LinCo  ( S 
\  { s } ) )  <->  ( y
( .s `  M
) s )  e.  ( ( LSpan `  M
) `  ( S  \  { s } ) ) ) )
112111bicomd 201 . . . . . . 7  |-  ( ( M  e.  LMod  /\  ( S  \  { s } )  e.  ~P ( Base `  M ) )  ->  ( ( y ( .s `  M
) s )  e.  ( ( LSpan `  M
) `  ( S  \  { s } ) )  <->  ( y ( .s `  M ) s )  e.  ( M LinCo  ( S  \  { s } ) ) ) )
113101, 109, 112syl2anc 661 . . . . . 6  |-  ( ( ( ( S  e.  V  /\  M  e. 
LMod )  /\  ( S  e.  ~P ( Base `  M )  /\  A. f  e.  ( B  ^m  S ) ( ( f finSupp  .0.  /\  ( f ( linC  `  M ) S )  =  Z )  ->  A. x  e.  S  ( f `  x
)  =  .0.  )
) )  /\  (
s  e.  S  /\  y  e.  ( B  \  {  .0.  } ) ) )  ->  (
( y ( .s
`  M ) s )  e.  ( (
LSpan `  M ) `  ( S  \  { s } ) )  <->  ( y
( .s `  M
) s )  e.  ( M LinCo  ( S 
\  { s } ) ) ) )
1143adantr 465 . . . . . . . . 9  |-  ( ( ( S  e.  V  /\  M  e.  LMod )  /\  ( S  e. 
~P ( Base `  M
)  /\  A. f  e.  ( B  ^m  S
) ( ( f finSupp  .0.  /\  ( f ( linC  `  M ) S )  =  Z )  ->  A. x  e.  S  ( f `  x
)  =  .0.  )
) )  ->  M  e.  LMod )
115 difexg 4445 . . . . . . . . . . . 12  |-  ( S  e.  ~P ( Base `  M )  ->  ( S  \  { s } )  e.  _V )
116115, 106syl 16 . . . . . . . . . . 11  |-  ( S  e.  ~P ( Base `  M )  ->  (
( S  \  {
s } )  e. 
~P ( Base `  M
)  <->  ( S  \  { s } ) 
C_  ( Base `  M
) ) )
117102, 116mpbird 232 . . . . . . . . . 10  |-  ( S  e.  ~P ( Base `  M )  ->  ( S  \  { s } )  e.  ~P ( Base `  M ) )
118117ad2antrl 727 . . . . . . . . 9  |-  ( ( ( S  e.  V  /\  M  e.  LMod )  /\  ( S  e. 
~P ( Base `  M
)  /\  A. f  e.  ( B  ^m  S
) ( ( f finSupp  .0.  /\  ( f ( linC  `  M ) S )  =  Z )  ->  A. x  e.  S  ( f `  x
)  =  .0.  )
) )  ->  ( S  \  { s } )  e.  ~P ( Base `  M ) )
119114, 118jca 532 . . . . . . . 8  |-  ( ( ( S  e.  V  /\  M  e.  LMod )  /\  ( S  e. 
~P ( Base `  M
)  /\  A. f  e.  ( B  ^m  S
) ( ( f finSupp  .0.  /\  ( f ( linC  `  M ) S )  =  Z )  ->  A. x  e.  S  ( f `  x
)  =  .0.  )
) )  ->  ( M  e.  LMod  /\  ( S  \  { s } )  e.  ~P ( Base `  M ) ) )
120119adantr 465 . . . . . . 7  |-  ( ( ( ( S  e.  V  /\  M  e. 
LMod )  /\  ( S  e.  ~P ( Base `  M )  /\  A. f  e.  ( B  ^m  S ) ( ( f finSupp  .0.  /\  ( f ( linC  `  M ) S )  =  Z )  ->  A. x  e.  S  ( f `  x
)  =  .0.  )
) )  /\  (
s  e.  S  /\  y  e.  ( B  \  {  .0.  } ) ) )  ->  ( M  e.  LMod  /\  ( S  \  { s } )  e.  ~P ( Base `  M ) ) )
12116, 17, 18lcoval 30951 . . . . . . . 8  |-  ( ( M  e.  LMod  /\  ( S  \  { s } )  e.  ~P ( Base `  M ) )  ->  ( ( y ( .s `  M
) s )  e.  ( M LinCo  ( S 
\  { s } ) )  <->  ( (
y ( .s `  M ) s )  e.  ( Base `  M
)  /\  E. g  e.  ( B  ^m  ( S  \  { s } ) ) ( g finSupp 
( 0g `  R
)  /\  ( y
( .s `  M
) s )  =  ( g ( linC  `  M ) ( S 
\  { s } ) ) ) ) ) )
12219eqcomi 2447 . . . . . . . . . . . 12  |-  ( 0g
`  R )  =  .0.
123122breq2i 4305 . . . . . . . . . . 11  |-  ( g finSupp 
( 0g `  R
)  <->  g finSupp  .0.  )
124123anbi1i 695 . . . . . . . . . 10  |-  ( ( g finSupp  ( 0g `  R )  /\  (
y ( .s `  M ) s )  =  ( g ( linC  `  M ) ( S 
\  { s } ) ) )  <->  ( g finSupp  .0. 
/\  ( y ( .s `  M ) s )  =  ( g ( linC  `  M
) ( S  \  { s } ) ) ) )
125124rexbii 2745 . . . . . . . . 9  |-  ( E. g  e.  ( B  ^m  ( S  \  { s } ) ) ( g finSupp  ( 0g `  R )  /\  ( y ( .s
`  M ) s )  =  ( g ( linC  `  M )
( S  \  {
s } ) ) )  <->  E. g  e.  ( B  ^m  ( S 
\  { s } ) ) ( g finSupp  .0.  /\  ( y ( .s `  M ) s )  =  ( g ( linC  `  M
) ( S  \  { s } ) ) ) )
126125anbi2i 694 . . . . . . . 8  |-  ( ( ( y ( .s
`  M ) s )  e.  ( Base `  M )  /\  E. g  e.  ( B  ^m  ( S  \  {
s } ) ) ( g finSupp  ( 0g
`  R )  /\  ( y ( .s
`  M ) s )  =  ( g ( linC  `  M )
( S  \  {
s } ) ) ) )  <->  ( (
y ( .s `  M ) s )  e.  ( Base `  M
)  /\  E. g  e.  ( B  ^m  ( S  \  { s } ) ) ( g finSupp  .0.  /\  ( y ( .s `  M ) s )  =  ( g ( linC  `  M
) ( S  \  { s } ) ) ) ) )
127121, 126syl6bb 261 . . . . . . 7  |-  ( ( M  e.  LMod  /\  ( S  \  { s } )  e.  ~P ( Base `  M ) )  ->  ( ( y ( .s `  M
) s )  e.  ( M LinCo  ( S 
\  { s } ) )  <->  ( (
y ( .s `  M ) s )  e.  ( Base `  M
)  /\  E. g  e.  ( B  ^m  ( S  \  { s } ) ) ( g finSupp  .0.  /\  ( y ( .s `  M ) s )  =  ( g ( linC  `  M
) ( S  \  { s } ) ) ) ) ) )
128120, 127syl 16 . . . . . 6  |-  ( ( ( ( S  e.  V  /\  M  e. 
LMod )  /\  ( S  e.  ~P ( Base `  M )  /\  A. f  e.  ( B  ^m  S ) ( ( f finSupp  .0.  /\  ( f ( linC  `  M ) S )  =  Z )  ->  A. x  e.  S  ( f `  x
)  =  .0.  )
) )  /\  (
s  e.  S  /\  y  e.  ( B  \  {  .0.  } ) ) )  ->  (
( y ( .s
`  M ) s )  e.  ( M LinCo 
( S  \  {
s } ) )  <-> 
( ( y ( .s `  M ) s )  e.  (
Base `  M )  /\  E. g  e.  ( B  ^m  ( S 
\  { s } ) ) ( g finSupp  .0.  /\  ( y ( .s `  M ) s )  =  ( g ( linC  `  M
) ( S  \  { s } ) ) ) ) ) )
129113, 128bitrd 253 . . . . 5  |-  ( ( ( ( S  e.  V  /\  M  e. 
LMod )  /\  ( S  e.  ~P ( Base `  M )  /\  A. f  e.  ( B  ^m  S ) ( ( f finSupp  .0.  /\  ( f ( linC  `  M ) S )  =  Z )  ->  A. x  e.  S  ( f `  x
)  =  .0.  )
) )  /\  (
s  e.  S  /\  y  e.  ( B  \  {  .0.  } ) ) )  ->  (
( y ( .s
`  M ) s )  e.  ( (
LSpan `  M ) `  ( S  \  { s } ) )  <->  ( (
y ( .s `  M ) s )  e.  ( Base `  M
)  /\  E. g  e.  ( B  ^m  ( S  \  { s } ) ) ( g finSupp  .0.  /\  ( y ( .s `  M ) s )  =  ( g ( linC  `  M
) ( S  \  { s } ) ) ) ) ) )
130100, 129mtbird 301 . . . 4  |-  ( ( ( ( S  e.  V  /\  M  e. 
LMod )  /\  ( S  e.  ~P ( Base `  M )  /\  A. f  e.  ( B  ^m  S ) ( ( f finSupp  .0.  /\  ( f ( linC  `  M ) S )  =  Z )  ->  A. x  e.  S  ( f `  x
)  =  .0.  )
) )  /\  (
s  e.  S  /\  y  e.  ( B  \  {  .0.  } ) ) )  ->  -.  ( y ( .s
`  M ) s )  e.  ( (
LSpan `  M ) `  ( S  \  { s } ) ) )
131130ralrimivva 2813 . . 3  |-  ( ( ( S  e.  V  /\  M  e.  LMod )  /\  ( S  e. 
~P ( Base `  M
)  /\  A. f  e.  ( B  ^m  S
) ( ( f finSupp  .0.  /\  ( f ( linC  `  M ) S )  =  Z )  ->  A. x  e.  S  ( f `  x
)  =  .0.  )
) )  ->  A. s  e.  S  A. y  e.  ( B  \  {  .0.  } )  -.  (
y ( .s `  M ) s )  e.  ( ( LSpan `  M ) `  ( S  \  { s } ) ) )
1322, 131jca 532 . 2  |-  ( ( ( S  e.  V  /\  M  e.  LMod )  /\  ( S  e. 
~P ( Base `  M
)  /\  A. f  e.  ( B  ^m  S
) ( ( f finSupp  .0.  /\  ( f ( linC  `  M ) S )  =  Z )  ->  A. x  e.  S  ( f `  x
)  =  .0.  )
) )  ->  ( S  C_  ( Base `  M
)  /\  A. s  e.  S  A. y  e.  ( B  \  {  .0.  } )  -.  (
y ( .s `  M ) s )  e.  ( ( LSpan `  M ) `  ( S  \  { s } ) ) ) )
133132ex 434 1  |-  ( ( S  e.  V  /\  M  e.  LMod )  -> 
( ( S  e. 
~P ( Base `  M
)  /\  A. f  e.  ( B  ^m  S
) ( ( f finSupp  .0.  /\  ( f ( linC  `  M ) S )  =  Z )  ->  A. x  e.  S  ( f `  x
)  =  .0.  )
)  ->  ( S  C_  ( Base `  M
)  /\  A. s  e.  S  A. y  e.  ( B  \  {  .0.  } )  -.  (
y ( .s `  M ) s )  e.  ( ( LSpan `  M ) `  ( S  \  { s } ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   A.wral 2720   E.wrex 2721   _Vcvv 2977    \ cdif 3330    C_ wss 3333   ifcif 3796   ~Pcpw 3865   {csn 3882   class class class wbr 4297    e. cmpt 4355   ` cfv 5423  (class class class)co 6096    ^m cmap 7219   finSupp cfsupp 7625   Basecbs 14179  Scalarcsca 14246   .scvsca 14247   0gc0g 14383   Grpcgrp 15415   invgcminusg 15416   LModclmod 16953   LSpanclspn 17057   linC clinc 30943   LinCo clinco 30944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4408  ax-sep 4418  ax-nul 4426  ax-pow 4475  ax-pr 4536  ax-un 6377  ax-inf2 7852  ax-cnex 9343  ax-resscn 9344  ax-1cn 9345  ax-icn 9346  ax-addcl 9347  ax-addrcl 9348  ax-mulcl 9349  ax-mulrcl 9350  ax-mulcom 9351  ax-addass 9352  ax-mulass 9353  ax-distr 9354  ax-i2m1 9355  ax-1ne0 9356  ax-1rid 9357  ax-rnegex 9358  ax-rrecex 9359  ax-cnre 9360  ax-pre-lttri 9361  ax-pre-lttrn 9362  ax-pre-ltadd 9363  ax-pre-mulgt0 9364
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-nel 2614  df-ral 2725  df-rex 2726  df-reu 2727  df-rmo 2728  df-rab 2729  df-v 2979  df-sbc 3192  df-csb 3294  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-pss 3349  df-nul 3643  df-if 3797  df-pw 3867  df-sn 3883  df-pr 3885  df-tp 3887  df-op 3889  df-uni 4097  df-int 4134  df-iun 4178  df-iin 4179  df-br 4298  df-opab 4356  df-mpt 4357  df-tr 4391  df-eprel 4637  df-id 4641  df-po 4646  df-so 4647  df-fr 4684  df-se 4685  df-we 4686  df-ord 4727  df-on 4728  df-lim 4729  df-suc 4730  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5386  df-fun 5425  df-fn 5426  df-f 5427  df-f1 5428  df-fo 5429  df-f1o 5430  df-fv 5431  df-isom 5432  df-riota 6057  df-ov 6099  df-oprab 6100  df-mpt2 6101  df-of 6325  df-om 6482  df-1st 6582  df-2nd 6583  df-supp 6696  df-recs 6837  df-rdg 6871  df-1o 6925  df-oadd 6929  df-er 7106  df-map 7221  df-en 7316  df-dom 7317  df-sdom 7318  df-fin 7319  df-fsupp 7626  df-oi 7729  df-card 8114  df-pnf 9425  df-mnf 9426  df-xr 9427  df-ltxr 9428  df-le 9429  df-sub 9602  df-neg 9603  df-nn 10328  df-2 10385  df-n0 10585  df-z 10652  df-uz 10867  df-fz 11443  df-fzo 11554  df-seq 11812  df-hash 12109  df-ndx 14182  df-slot 14183  df-base 14184  df-sets 14185  df-ress 14186  df-plusg 14256  df-0g 14385  df-gsum 14386  df-mre 14529  df-mrc 14530  df-acs 14532  df-mnd 15420  df-mhm 15469  df-submnd 15470  df-grp 15550  df-minusg 15551  df-sbg 15552  df-mulg 15553  df-subg 15683  df-ghm 15750  df-cntz 15840  df-cmn 16284  df-abl 16285  df-mgp 16597  df-ur 16609  df-rng 16652  df-lmod 16955  df-lss 17019  df-lsp 17058  df-linc 30945  df-lco 30946
This theorem is referenced by:  lindslininds  31003
  Copyright terms: Public domain W3C validator