Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isdrngo2 Structured version   Visualization version   GIF version

Theorem isdrngo2 32927
Description: A division ring is a ring in which 1 ≠ 0 and every nonzero element is invertible. (Contributed by Jeff Madsen, 8-Jun-2010.)
Hypotheses
Ref Expression
isdivrng1.1 𝐺 = (1st𝑅)
isdivrng1.2 𝐻 = (2nd𝑅)
isdivrng1.3 𝑍 = (GId‘𝐺)
isdivrng1.4 𝑋 = ran 𝐺
isdivrng2.5 𝑈 = (GId‘𝐻)
Assertion
Ref Expression
isdrngo2 (𝑅 ∈ DivRingOps ↔ (𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)))
Distinct variable groups:   𝑥,𝐻,𝑦   𝑥,𝑋,𝑦   𝑥,𝑍,𝑦   𝑥,𝑅,𝑦   𝑥,𝑈,𝑦
Allowed substitution hints:   𝐺(𝑥,𝑦)

Proof of Theorem isdrngo2
Dummy variables 𝑢 𝑣 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isdivrng1.1 . . 3 𝐺 = (1st𝑅)
2 isdivrng1.2 . . 3 𝐻 = (2nd𝑅)
3 isdivrng1.3 . . 3 𝑍 = (GId‘𝐺)
4 isdivrng1.4 . . 3 𝑋 = ran 𝐺
51, 2, 3, 4isdrngo1 32925 . 2 (𝑅 ∈ DivRingOps ↔ (𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp))
6 isdivrng2.5 . . . . . . 7 𝑈 = (GId‘𝐻)
71, 2, 4, 3, 6dvrunz 32923 . . . . . 6 (𝑅 ∈ DivRingOps → 𝑈𝑍)
85, 7sylbir 224 . . . . 5 ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → 𝑈𝑍)
9 grporndm 26748 . . . . . . . . . . . 12 ((𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp → ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) = dom dom (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))))
109adantl 481 . . . . . . . . . . 11 ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) = dom dom (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))))
11 difss 3699 . . . . . . . . . . . . . . . . 17 (𝑋 ∖ {𝑍}) ⊆ 𝑋
12 xpss12 5148 . . . . . . . . . . . . . . . . 17 (((𝑋 ∖ {𝑍}) ⊆ 𝑋 ∧ (𝑋 ∖ {𝑍}) ⊆ 𝑋) → ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})) ⊆ (𝑋 × 𝑋))
1311, 11, 12mp2an 704 . . . . . . . . . . . . . . . 16 ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})) ⊆ (𝑋 × 𝑋)
141, 2, 4rngosm 32869 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ RingOps → 𝐻:(𝑋 × 𝑋)⟶𝑋)
15 fdm 5964 . . . . . . . . . . . . . . . . 17 (𝐻:(𝑋 × 𝑋)⟶𝑋 → dom 𝐻 = (𝑋 × 𝑋))
1614, 15syl 17 . . . . . . . . . . . . . . . 16 (𝑅 ∈ RingOps → dom 𝐻 = (𝑋 × 𝑋))
1713, 16syl5sseqr 3617 . . . . . . . . . . . . . . 15 (𝑅 ∈ RingOps → ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})) ⊆ dom 𝐻)
1817adantr 480 . . . . . . . . . . . . . 14 ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})) ⊆ dom 𝐻)
19 ssdmres 5340 . . . . . . . . . . . . . 14 (((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})) ⊆ dom 𝐻 ↔ dom (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) = ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))
2018, 19sylib 207 . . . . . . . . . . . . 13 ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → dom (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) = ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))
2120dmeqd 5248 . . . . . . . . . . . 12 ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → dom dom (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) = dom ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))
22 dmxpid 5266 . . . . . . . . . . . 12 dom ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})) = (𝑋 ∖ {𝑍})
2321, 22syl6eq 2660 . . . . . . . . . . 11 ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → dom dom (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) = (𝑋 ∖ {𝑍}))
2410, 23eqtrd 2644 . . . . . . . . . 10 ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) = (𝑋 ∖ {𝑍}))
2524eleq2d 2673 . . . . . . . . 9 ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → (𝑥 ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ↔ 𝑥 ∈ (𝑋 ∖ {𝑍})))
2625biimpar 501 . . . . . . . 8 (((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → 𝑥 ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))))
27 eqid 2610 . . . . . . . . . . 11 ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) = ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))
28 eqid 2610 . . . . . . . . . . 11 (inv‘(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))) = (inv‘(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))))
2927, 28grpoinvcl 26762 . . . . . . . . . 10 (((𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp ∧ 𝑥 ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))) → ((inv‘(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))))‘𝑥) ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))))
3029adantll 746 . . . . . . . . 9 (((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) ∧ 𝑥 ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))) → ((inv‘(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))))‘𝑥) ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))))
31 eqid 2610 . . . . . . . . . . . 12 (GId‘(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))) = (GId‘(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))))
3227, 31, 28grpolinv 26764 . . . . . . . . . . 11 (((𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp ∧ 𝑥 ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))) → (((inv‘(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))))‘𝑥)(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑥) = (GId‘(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))))
3332adantll 746 . . . . . . . . . 10 (((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) ∧ 𝑥 ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))) → (((inv‘(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))))‘𝑥)(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑥) = (GId‘(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))))
342rngomndo 32904 . . . . . . . . . . . . . 14 (𝑅 ∈ RingOps → 𝐻 ∈ MndOp)
35 mndomgmid 32840 . . . . . . . . . . . . . 14 (𝐻 ∈ MndOp → 𝐻 ∈ (Magma ∩ ExId ))
3634, 35syl 17 . . . . . . . . . . . . 13 (𝑅 ∈ RingOps → 𝐻 ∈ (Magma ∩ ExId ))
3736adantr 480 . . . . . . . . . . . 12 ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → 𝐻 ∈ (Magma ∩ ExId ))
3811, 4sseqtri 3600 . . . . . . . . . . . . . 14 (𝑋 ∖ {𝑍}) ⊆ ran 𝐺
392, 1rngorn1eq 32903 . . . . . . . . . . . . . 14 (𝑅 ∈ RingOps → ran 𝐺 = ran 𝐻)
4038, 39syl5sseq 3616 . . . . . . . . . . . . 13 (𝑅 ∈ RingOps → (𝑋 ∖ {𝑍}) ⊆ ran 𝐻)
4140adantr 480 . . . . . . . . . . . 12 ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → (𝑋 ∖ {𝑍}) ⊆ ran 𝐻)
421rneqi 5273 . . . . . . . . . . . . . . . 16 ran 𝐺 = ran (1st𝑅)
434, 42eqtri 2632 . . . . . . . . . . . . . . 15 𝑋 = ran (1st𝑅)
4443, 2, 6rngo1cl 32908 . . . . . . . . . . . . . 14 (𝑅 ∈ RingOps → 𝑈𝑋)
4544adantr 480 . . . . . . . . . . . . 13 ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → 𝑈𝑋)
46 eldifsn 4260 . . . . . . . . . . . . 13 (𝑈 ∈ (𝑋 ∖ {𝑍}) ↔ (𝑈𝑋𝑈𝑍))
4745, 8, 46sylanbrc 695 . . . . . . . . . . . 12 ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → 𝑈 ∈ (𝑋 ∖ {𝑍}))
48 grpomndo 32844 . . . . . . . . . . . . . 14 ((𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp → (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ MndOp)
49 mndoismgmOLD 32839 . . . . . . . . . . . . . 14 ((𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ MndOp → (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ Magma)
5048, 49syl 17 . . . . . . . . . . . . 13 ((𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp → (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ Magma)
5150adantl 481 . . . . . . . . . . . 12 ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ Magma)
52 eqid 2610 . . . . . . . . . . . . 13 ran 𝐻 = ran 𝐻
53 eqid 2610 . . . . . . . . . . . . 13 (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) = (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))
5452, 6, 53exidresid 32848 . . . . . . . . . . . 12 (((𝐻 ∈ (Magma ∩ ExId ) ∧ (𝑋 ∖ {𝑍}) ⊆ ran 𝐻𝑈 ∈ (𝑋 ∖ {𝑍})) ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ Magma) → (GId‘(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))) = 𝑈)
5537, 41, 47, 51, 54syl31anc 1321 . . . . . . . . . . 11 ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → (GId‘(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))) = 𝑈)
5655adantr 480 . . . . . . . . . 10 (((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) ∧ 𝑥 ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))) → (GId‘(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))) = 𝑈)
5733, 56eqtrd 2644 . . . . . . . . 9 (((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) ∧ 𝑥 ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))) → (((inv‘(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))))‘𝑥)(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑥) = 𝑈)
58 oveq1 6556 . . . . . . . . . . 11 (𝑦 = ((inv‘(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))))‘𝑥) → (𝑦(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑥) = (((inv‘(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))))‘𝑥)(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑥))
5958eqeq1d 2612 . . . . . . . . . 10 (𝑦 = ((inv‘(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))))‘𝑥) → ((𝑦(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑥) = 𝑈 ↔ (((inv‘(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))))‘𝑥)(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑥) = 𝑈))
6059rspcev 3282 . . . . . . . . 9 ((((inv‘(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))))‘𝑥) ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∧ (((inv‘(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))))‘𝑥)(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑥) = 𝑈) → ∃𝑦 ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))(𝑦(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑥) = 𝑈)
6130, 57, 60syl2anc 691 . . . . . . . 8 (((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) ∧ 𝑥 ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))) → ∃𝑦 ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))(𝑦(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑥) = 𝑈)
6226, 61syldan 486 . . . . . . 7 (((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → ∃𝑦 ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))(𝑦(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑥) = 𝑈)
6324adantr 480 . . . . . . . . 9 (((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) = (𝑋 ∖ {𝑍}))
6463rexeqdv 3122 . . . . . . . 8 (((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → (∃𝑦 ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))(𝑦(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑥) = 𝑈 ↔ ∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑥) = 𝑈))
65 ovres 6698 . . . . . . . . . . . 12 ((𝑦 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → (𝑦(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑥) = (𝑦𝐻𝑥))
6665ancoms 468 . . . . . . . . . . 11 ((𝑥 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑦 ∈ (𝑋 ∖ {𝑍})) → (𝑦(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑥) = (𝑦𝐻𝑥))
6766eqeq1d 2612 . . . . . . . . . 10 ((𝑥 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑦 ∈ (𝑋 ∖ {𝑍})) → ((𝑦(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑥) = 𝑈 ↔ (𝑦𝐻𝑥) = 𝑈))
6867rexbidva 3031 . . . . . . . . 9 (𝑥 ∈ (𝑋 ∖ {𝑍}) → (∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑥) = 𝑈 ↔ ∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈))
6968adantl 481 . . . . . . . 8 (((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → (∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑥) = 𝑈 ↔ ∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈))
7064, 69bitrd 267 . . . . . . 7 (((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → (∃𝑦 ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))(𝑦(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑥) = 𝑈 ↔ ∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈))
7162, 70mpbid 221 . . . . . 6 (((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → ∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)
7271ralrimiva 2949 . . . . 5 ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)
738, 72jca 553 . . . 4 ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈))
74 fvex 6113 . . . . . . . . 9 (1st𝑅) ∈ V
751, 74eqeltri 2684 . . . . . . . 8 𝐺 ∈ V
7675rnex 6992 . . . . . . 7 ran 𝐺 ∈ V
774, 76eqeltri 2684 . . . . . 6 𝑋 ∈ V
78 difexg 4735 . . . . . 6 (𝑋 ∈ V → (𝑋 ∖ {𝑍}) ∈ V)
7977, 78mp1i 13 . . . . 5 ((𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) → (𝑋 ∖ {𝑍}) ∈ V)
80 ffn 5958 . . . . . . . . 9 (𝐻:(𝑋 × 𝑋)⟶𝑋𝐻 Fn (𝑋 × 𝑋))
8114, 80syl 17 . . . . . . . 8 (𝑅 ∈ RingOps → 𝐻 Fn (𝑋 × 𝑋))
8281adantr 480 . . . . . . 7 ((𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) → 𝐻 Fn (𝑋 × 𝑋))
83 fnssres 5918 . . . . . . 7 ((𝐻 Fn (𝑋 × 𝑋) ∧ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})) ⊆ (𝑋 × 𝑋)) → (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) Fn ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))
8482, 13, 83sylancl 693 . . . . . 6 ((𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) → (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) Fn ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))
85 ovres 6698 . . . . . . . . 9 ((𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍})) → (𝑢(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑣) = (𝑢𝐻𝑣))
8685adantl 481 . . . . . . . 8 (((𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}))) → (𝑢(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑣) = (𝑢𝐻𝑣))
87 eldifi 3694 . . . . . . . . . . . 12 (𝑢 ∈ (𝑋 ∖ {𝑍}) → 𝑢𝑋)
88 eldifi 3694 . . . . . . . . . . . 12 (𝑣 ∈ (𝑋 ∖ {𝑍}) → 𝑣𝑋)
8987, 88anim12i 588 . . . . . . . . . . 11 ((𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍})) → (𝑢𝑋𝑣𝑋))
901, 2, 4rngocl 32870 . . . . . . . . . . . 12 ((𝑅 ∈ RingOps ∧ 𝑢𝑋𝑣𝑋) → (𝑢𝐻𝑣) ∈ 𝑋)
91903expb 1258 . . . . . . . . . . 11 ((𝑅 ∈ RingOps ∧ (𝑢𝑋𝑣𝑋)) → (𝑢𝐻𝑣) ∈ 𝑋)
9289, 91sylan2 490 . . . . . . . . . 10 ((𝑅 ∈ RingOps ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}))) → (𝑢𝐻𝑣) ∈ 𝑋)
9392adantlr 747 . . . . . . . . 9 (((𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}))) → (𝑢𝐻𝑣) ∈ 𝑋)
94 oveq2 6557 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑢 → (𝑦𝐻𝑥) = (𝑦𝐻𝑢))
9594eqeq1d 2612 . . . . . . . . . . . . . . 15 (𝑥 = 𝑢 → ((𝑦𝐻𝑥) = 𝑈 ↔ (𝑦𝐻𝑢) = 𝑈))
9695rexbidv 3034 . . . . . . . . . . . . . 14 (𝑥 = 𝑢 → (∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈 ↔ ∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑢) = 𝑈))
9796rspcv 3278 . . . . . . . . . . . . 13 (𝑢 ∈ (𝑋 ∖ {𝑍}) → (∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈 → ∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑢) = 𝑈))
9897imdistanri 723 . . . . . . . . . . . 12 ((∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈𝑢 ∈ (𝑋 ∖ {𝑍})) → (∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑢) = 𝑈𝑢 ∈ (𝑋 ∖ {𝑍})))
99 eldifsn 4260 . . . . . . . . . . . . . . 15 (𝑣 ∈ (𝑋 ∖ {𝑍}) ↔ (𝑣𝑋𝑣𝑍))
100 ssrexv 3630 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑋 ∖ {𝑍}) ⊆ 𝑋 → (∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑢) = 𝑈 → ∃𝑦𝑋 (𝑦𝐻𝑢) = 𝑈))
10111, 100ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 (∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑢) = 𝑈 → ∃𝑦𝑋 (𝑦𝐻𝑢) = 𝑈)
1021, 2, 3, 4, 6zerdivemp1x 32916 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ RingOps ∧ 𝑢𝑋 ∧ ∃𝑦𝑋 (𝑦𝐻𝑢) = 𝑈) → (𝑣𝑋 → ((𝑢𝐻𝑣) = 𝑍𝑣 = 𝑍)))
103101, 102syl3an3 1353 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ RingOps ∧ 𝑢𝑋 ∧ ∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑢) = 𝑈) → (𝑣𝑋 → ((𝑢𝐻𝑣) = 𝑍𝑣 = 𝑍)))
10487, 103syl3an2 1352 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ RingOps ∧ 𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ ∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑢) = 𝑈) → (𝑣𝑋 → ((𝑢𝐻𝑣) = 𝑍𝑣 = 𝑍)))
1051043expb 1258 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ RingOps ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ ∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑢) = 𝑈)) → (𝑣𝑋 → ((𝑢𝐻𝑣) = 𝑍𝑣 = 𝑍)))
106105imp 444 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ RingOps ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ ∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑢) = 𝑈)) ∧ 𝑣𝑋) → ((𝑢𝐻𝑣) = 𝑍𝑣 = 𝑍))
107106necon3d 2803 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ RingOps ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ ∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑢) = 𝑈)) ∧ 𝑣𝑋) → (𝑣𝑍 → (𝑢𝐻𝑣) ≠ 𝑍))
108107impr 647 . . . . . . . . . . . . . . 15 (((𝑅 ∈ RingOps ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ ∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑢) = 𝑈)) ∧ (𝑣𝑋𝑣𝑍)) → (𝑢𝐻𝑣) ≠ 𝑍)
10999, 108sylan2b 491 . . . . . . . . . . . . . 14 (((𝑅 ∈ RingOps ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ ∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑢) = 𝑈)) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍})) → (𝑢𝐻𝑣) ≠ 𝑍)
110109an32s 842 . . . . . . . . . . . . 13 (((𝑅 ∈ RingOps ∧ 𝑣 ∈ (𝑋 ∖ {𝑍})) ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ ∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑢) = 𝑈)) → (𝑢𝐻𝑣) ≠ 𝑍)
111110ancom2s 840 . . . . . . . . . . . 12 (((𝑅 ∈ RingOps ∧ 𝑣 ∈ (𝑋 ∖ {𝑍})) ∧ (∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑢) = 𝑈𝑢 ∈ (𝑋 ∖ {𝑍}))) → (𝑢𝐻𝑣) ≠ 𝑍)
11298, 111sylan2 490 . . . . . . . . . . 11 (((𝑅 ∈ RingOps ∧ 𝑣 ∈ (𝑋 ∖ {𝑍})) ∧ (∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈𝑢 ∈ (𝑋 ∖ {𝑍}))) → (𝑢𝐻𝑣) ≠ 𝑍)
113112an42s 866 . . . . . . . . . 10 (((𝑅 ∈ RingOps ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈) ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}))) → (𝑢𝐻𝑣) ≠ 𝑍)
114113adantlrl 752 . . . . . . . . 9 (((𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}))) → (𝑢𝐻𝑣) ≠ 𝑍)
115 eldifsn 4260 . . . . . . . . 9 ((𝑢𝐻𝑣) ∈ (𝑋 ∖ {𝑍}) ↔ ((𝑢𝐻𝑣) ∈ 𝑋 ∧ (𝑢𝐻𝑣) ≠ 𝑍))
11693, 114, 115sylanbrc 695 . . . . . . . 8 (((𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}))) → (𝑢𝐻𝑣) ∈ (𝑋 ∖ {𝑍}))
11786, 116eqeltrd 2688 . . . . . . 7 (((𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}))) → (𝑢(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑣) ∈ (𝑋 ∖ {𝑍}))
118117ralrimivva 2954 . . . . . 6 ((𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) → ∀𝑢 ∈ (𝑋 ∖ {𝑍})∀𝑣 ∈ (𝑋 ∖ {𝑍})(𝑢(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑣) ∈ (𝑋 ∖ {𝑍}))
119 ffnov 6662 . . . . . 6 ((𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))):((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))⟶(𝑋 ∖ {𝑍}) ↔ ((𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) Fn ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})) ∧ ∀𝑢 ∈ (𝑋 ∖ {𝑍})∀𝑣 ∈ (𝑋 ∖ {𝑍})(𝑢(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑣) ∈ (𝑋 ∖ {𝑍})))
12084, 118, 119sylanbrc 695 . . . . 5 ((𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) → (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))):((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))⟶(𝑋 ∖ {𝑍}))
1211163adantr3 1215 . . . . . . 7 (((𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑤 ∈ (𝑋 ∖ {𝑍}))) → (𝑢𝐻𝑣) ∈ (𝑋 ∖ {𝑍}))
122 simpr3 1062 . . . . . . 7 (((𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑤 ∈ (𝑋 ∖ {𝑍}))) → 𝑤 ∈ (𝑋 ∖ {𝑍}))
123121, 122ovresd 6699 . . . . . 6 (((𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑤 ∈ (𝑋 ∖ {𝑍}))) → ((𝑢𝐻𝑣)(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑤) = ((𝑢𝐻𝑣)𝐻𝑤))
124853adant3 1074 . . . . . . . 8 ((𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑤 ∈ (𝑋 ∖ {𝑍})) → (𝑢(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑣) = (𝑢𝐻𝑣))
125124adantl 481 . . . . . . 7 (((𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑤 ∈ (𝑋 ∖ {𝑍}))) → (𝑢(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑣) = (𝑢𝐻𝑣))
126125oveq1d 6564 . . . . . 6 (((𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑤 ∈ (𝑋 ∖ {𝑍}))) → ((𝑢(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑣)(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑤) = ((𝑢𝐻𝑣)(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑤))
127 ovres 6698 . . . . . . . . . 10 ((𝑣 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑤 ∈ (𝑋 ∖ {𝑍})) → (𝑣(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑤) = (𝑣𝐻𝑤))
1281273adant1 1072 . . . . . . . . 9 ((𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑤 ∈ (𝑋 ∖ {𝑍})) → (𝑣(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑤) = (𝑣𝐻𝑤))
129128adantl 481 . . . . . . . 8 (((𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑤 ∈ (𝑋 ∖ {𝑍}))) → (𝑣(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑤) = (𝑣𝐻𝑤))
130129oveq2d 6565 . . . . . . 7 (((𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑤 ∈ (𝑋 ∖ {𝑍}))) → (𝑢𝐻(𝑣(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑤)) = (𝑢𝐻(𝑣𝐻𝑤)))
131 simpr1 1060 . . . . . . . 8 (((𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑤 ∈ (𝑋 ∖ {𝑍}))) → 𝑢 ∈ (𝑋 ∖ {𝑍}))
132 fovrn 6702 . . . . . . . . . 10 (((𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))):((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))⟶(𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑤 ∈ (𝑋 ∖ {𝑍})) → (𝑣(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑤) ∈ (𝑋 ∖ {𝑍}))
1331323adant3r1 1266 . . . . . . . . 9 (((𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))):((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))⟶(𝑋 ∖ {𝑍}) ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑤 ∈ (𝑋 ∖ {𝑍}))) → (𝑣(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑤) ∈ (𝑋 ∖ {𝑍}))
134120, 133sylan 487 . . . . . . . 8 (((𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑤 ∈ (𝑋 ∖ {𝑍}))) → (𝑣(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑤) ∈ (𝑋 ∖ {𝑍}))
135131, 134ovresd 6699 . . . . . . 7 (((𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑤 ∈ (𝑋 ∖ {𝑍}))) → (𝑢(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))(𝑣(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑤)) = (𝑢𝐻(𝑣(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑤)))
136 eldifi 3694 . . . . . . . . . 10 (𝑤 ∈ (𝑋 ∖ {𝑍}) → 𝑤𝑋)
13787, 88, 1363anim123i 1240 . . . . . . . . 9 ((𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑤 ∈ (𝑋 ∖ {𝑍})) → (𝑢𝑋𝑣𝑋𝑤𝑋))
1381, 2, 4rngoass 32875 . . . . . . . . 9 ((𝑅 ∈ RingOps ∧ (𝑢𝑋𝑣𝑋𝑤𝑋)) → ((𝑢𝐻𝑣)𝐻𝑤) = (𝑢𝐻(𝑣𝐻𝑤)))
139137, 138sylan2 490 . . . . . . . 8 ((𝑅 ∈ RingOps ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑤 ∈ (𝑋 ∖ {𝑍}))) → ((𝑢𝐻𝑣)𝐻𝑤) = (𝑢𝐻(𝑣𝐻𝑤)))
140139adantlr 747 . . . . . . 7 (((𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑤 ∈ (𝑋 ∖ {𝑍}))) → ((𝑢𝐻𝑣)𝐻𝑤) = (𝑢𝐻(𝑣𝐻𝑤)))
141130, 135, 1403eqtr4d 2654 . . . . . 6 (((𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑤 ∈ (𝑋 ∖ {𝑍}))) → (𝑢(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))(𝑣(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑤)) = ((𝑢𝐻𝑣)𝐻𝑤))
142123, 126, 1413eqtr4d 2654 . . . . 5 (((𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑤 ∈ (𝑋 ∖ {𝑍}))) → ((𝑢(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑣)(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑤) = (𝑢(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))(𝑣(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑤)))
14344anim1i 590 . . . . . . 7 ((𝑅 ∈ RingOps ∧ 𝑈𝑍) → (𝑈𝑋𝑈𝑍))
144143, 46sylibr 223 . . . . . 6 ((𝑅 ∈ RingOps ∧ 𝑈𝑍) → 𝑈 ∈ (𝑋 ∖ {𝑍}))
145144adantrr 749 . . . . 5 ((𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) → 𝑈 ∈ (𝑋 ∖ {𝑍}))
146 ovres 6698 . . . . . . . 8 ((𝑈 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑢 ∈ (𝑋 ∖ {𝑍})) → (𝑈(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑢) = (𝑈𝐻𝑢))
147144, 146sylan 487 . . . . . . 7 (((𝑅 ∈ RingOps ∧ 𝑈𝑍) ∧ 𝑢 ∈ (𝑋 ∖ {𝑍})) → (𝑈(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑢) = (𝑈𝐻𝑢))
1482, 43, 6rngolidm 32906 . . . . . . . . 9 ((𝑅 ∈ RingOps ∧ 𝑢𝑋) → (𝑈𝐻𝑢) = 𝑢)
14987, 148sylan2 490 . . . . . . . 8 ((𝑅 ∈ RingOps ∧ 𝑢 ∈ (𝑋 ∖ {𝑍})) → (𝑈𝐻𝑢) = 𝑢)
150149adantlr 747 . . . . . . 7 (((𝑅 ∈ RingOps ∧ 𝑈𝑍) ∧ 𝑢 ∈ (𝑋 ∖ {𝑍})) → (𝑈𝐻𝑢) = 𝑢)
151147, 150eqtrd 2644 . . . . . 6 (((𝑅 ∈ RingOps ∧ 𝑈𝑍) ∧ 𝑢 ∈ (𝑋 ∖ {𝑍})) → (𝑈(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑢) = 𝑢)
152151adantlrr 753 . . . . 5 (((𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) ∧ 𝑢 ∈ (𝑋 ∖ {𝑍})) → (𝑈(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑢) = 𝑢)
15396rspcva 3280 . . . . . . . . 9 ((𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈) → ∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑢) = 𝑈)
154 oveq1 6556 . . . . . . . . . . . 12 (𝑦 = 𝑧 → (𝑦𝐻𝑢) = (𝑧𝐻𝑢))
155154eqeq1d 2612 . . . . . . . . . . 11 (𝑦 = 𝑧 → ((𝑦𝐻𝑢) = 𝑈 ↔ (𝑧𝐻𝑢) = 𝑈))
156155cbvrexv 3148 . . . . . . . . . 10 (∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑢) = 𝑈 ↔ ∃𝑧 ∈ (𝑋 ∖ {𝑍})(𝑧𝐻𝑢) = 𝑈)
157 ovres 6698 . . . . . . . . . . . . . 14 ((𝑧 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑢 ∈ (𝑋 ∖ {𝑍})) → (𝑧(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑢) = (𝑧𝐻𝑢))
158157eqeq1d 2612 . . . . . . . . . . . . 13 ((𝑧 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑢 ∈ (𝑋 ∖ {𝑍})) → ((𝑧(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑢) = 𝑈 ↔ (𝑧𝐻𝑢) = 𝑈))
159158ancoms 468 . . . . . . . . . . . 12 ((𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑧 ∈ (𝑋 ∖ {𝑍})) → ((𝑧(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑢) = 𝑈 ↔ (𝑧𝐻𝑢) = 𝑈))
160159rexbidva 3031 . . . . . . . . . . 11 (𝑢 ∈ (𝑋 ∖ {𝑍}) → (∃𝑧 ∈ (𝑋 ∖ {𝑍})(𝑧(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑢) = 𝑈 ↔ ∃𝑧 ∈ (𝑋 ∖ {𝑍})(𝑧𝐻𝑢) = 𝑈))
161160biimpar 501 . . . . . . . . . 10 ((𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ ∃𝑧 ∈ (𝑋 ∖ {𝑍})(𝑧𝐻𝑢) = 𝑈) → ∃𝑧 ∈ (𝑋 ∖ {𝑍})(𝑧(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑢) = 𝑈)
162156, 161sylan2b 491 . . . . . . . . 9 ((𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ ∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑢) = 𝑈) → ∃𝑧 ∈ (𝑋 ∖ {𝑍})(𝑧(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑢) = 𝑈)
163153, 162syldan 486 . . . . . . . 8 ((𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈) → ∃𝑧 ∈ (𝑋 ∖ {𝑍})(𝑧(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑢) = 𝑈)
164163ancoms 468 . . . . . . 7 ((∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈𝑢 ∈ (𝑋 ∖ {𝑍})) → ∃𝑧 ∈ (𝑋 ∖ {𝑍})(𝑧(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑢) = 𝑈)
165164adantll 746 . . . . . 6 (((𝑅 ∈ RingOps ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈) ∧ 𝑢 ∈ (𝑋 ∖ {𝑍})) → ∃𝑧 ∈ (𝑋 ∖ {𝑍})(𝑧(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑢) = 𝑈)
166165adantlrl 752 . . . . 5 (((𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) ∧ 𝑢 ∈ (𝑋 ∖ {𝑍})) → ∃𝑧 ∈ (𝑋 ∖ {𝑍})(𝑧(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑢) = 𝑈)
16779, 120, 142, 145, 152, 166isgrpda 32924 . . . 4 ((𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) → (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp)
16873, 167impbida 873 . . 3 (𝑅 ∈ RingOps → ((𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp ↔ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)))
169168pm5.32i 667 . 2 ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) ↔ (𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)))
1705, 169bitri 263 1 (𝑅 ∈ DivRingOps ↔ (𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wral 2896  wrex 2897  Vcvv 3173  cdif 3537  cin 3539  wss 3540  {csn 4125   × cxp 5036  dom cdm 5038  ran crn 5039  cres 5040   Fn wfn 5799  wf 5800  cfv 5804  (class class class)co 6549  1st c1st 7057  2nd c2nd 7058  GrpOpcgr 26727  GIdcgi 26728  invcgn 26729   ExId cexid 32813  Magmacmagm 32817  MndOpcmndo 32835  RingOpscrngo 32863  DivRingOpscdrng 32917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-om 6958  df-1st 7059  df-2nd 7060  df-1o 7447  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-grpo 26731  df-gid 26732  df-ginv 26733  df-ablo 26783  df-ass 32812  df-exid 32814  df-mgmOLD 32818  df-sgrOLD 32830  df-mndo 32836  df-rngo 32864  df-drngo 32918
This theorem is referenced by:  isdrngo3  32928  divrngidl  32997
  Copyright terms: Public domain W3C validator