Mathbox for Jeff Madsen < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  divrngcl Structured version   Visualization version   GIF version

Theorem divrngcl 32926
 Description: The product of two nonzero elements of a division ring is nonzero. (Contributed by Jeff Madsen, 9-Jun-2010.)
Hypotheses
Ref Expression
isdivrng1.1 𝐺 = (1st𝑅)
isdivrng1.2 𝐻 = (2nd𝑅)
isdivrng1.3 𝑍 = (GId‘𝐺)
isdivrng1.4 𝑋 = ran 𝐺
Assertion
Ref Expression
divrngcl ((𝑅 ∈ DivRingOps ∧ 𝐴 ∈ (𝑋 ∖ {𝑍}) ∧ 𝐵 ∈ (𝑋 ∖ {𝑍})) → (𝐴𝐻𝐵) ∈ (𝑋 ∖ {𝑍}))

Proof of Theorem divrngcl
StepHypRef Expression
1 isdivrng1.1 . . 3 𝐺 = (1st𝑅)
2 isdivrng1.2 . . 3 𝐻 = (2nd𝑅)
3 isdivrng1.3 . . 3 𝑍 = (GId‘𝐺)
4 isdivrng1.4 . . 3 𝑋 = ran 𝐺
51, 2, 3, 4isdrngo1 32925 . 2 (𝑅 ∈ DivRingOps ↔ (𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp))
6 ovres 6698 . . . . 5 ((𝐴 ∈ (𝑋 ∖ {𝑍}) ∧ 𝐵 ∈ (𝑋 ∖ {𝑍})) → (𝐴(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝐵) = (𝐴𝐻𝐵))
76adantl 481 . . . 4 (((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) ∧ (𝐴 ∈ (𝑋 ∖ {𝑍}) ∧ 𝐵 ∈ (𝑋 ∖ {𝑍}))) → (𝐴(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝐵) = (𝐴𝐻𝐵))
8 eqid 2610 . . . . . . . . 9 ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) = ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))
98grpocl 26738 . . . . . . . 8 (((𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp ∧ 𝐴 ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∧ 𝐵 ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))) → (𝐴(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝐵) ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))))
1093expib 1260 . . . . . . 7 ((𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp → ((𝐴 ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∧ 𝐵 ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))) → (𝐴(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝐵) ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))))
1110adantl 481 . . . . . 6 ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → ((𝐴 ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∧ 𝐵 ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))) → (𝐴(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝐵) ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))))
12 grporndm 26748 . . . . . . . . . 10 ((𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp → ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) = dom dom (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))))
1312adantl 481 . . . . . . . . 9 ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) = dom dom (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))))
14 difss 3699 . . . . . . . . . . . . . . 15 (𝑋 ∖ {𝑍}) ⊆ 𝑋
15 xpss12 5148 . . . . . . . . . . . . . . 15 (((𝑋 ∖ {𝑍}) ⊆ 𝑋 ∧ (𝑋 ∖ {𝑍}) ⊆ 𝑋) → ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})) ⊆ (𝑋 × 𝑋))
1614, 14, 15mp2an 704 . . . . . . . . . . . . . 14 ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})) ⊆ (𝑋 × 𝑋)
171, 2, 4rngosm 32869 . . . . . . . . . . . . . . 15 (𝑅 ∈ RingOps → 𝐻:(𝑋 × 𝑋)⟶𝑋)
18 fdm 5964 . . . . . . . . . . . . . . 15 (𝐻:(𝑋 × 𝑋)⟶𝑋 → dom 𝐻 = (𝑋 × 𝑋))
1917, 18syl 17 . . . . . . . . . . . . . 14 (𝑅 ∈ RingOps → dom 𝐻 = (𝑋 × 𝑋))
2016, 19syl5sseqr 3617 . . . . . . . . . . . . 13 (𝑅 ∈ RingOps → ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})) ⊆ dom 𝐻)
21 ssdmres 5340 . . . . . . . . . . . . 13 (((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})) ⊆ dom 𝐻 ↔ dom (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) = ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))
2220, 21sylib 207 . . . . . . . . . . . 12 (𝑅 ∈ RingOps → dom (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) = ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))
2322adantr 480 . . . . . . . . . . 11 ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → dom (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) = ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))
2423dmeqd 5248 . . . . . . . . . 10 ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → dom dom (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) = dom ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))
25 dmxpid 5266 . . . . . . . . . 10 dom ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})) = (𝑋 ∖ {𝑍})
2624, 25syl6eq 2660 . . . . . . . . 9 ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → dom dom (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) = (𝑋 ∖ {𝑍}))
2713, 26eqtrd 2644 . . . . . . . 8 ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) = (𝑋 ∖ {𝑍}))
2827eleq2d 2673 . . . . . . 7 ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → (𝐴 ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ↔ 𝐴 ∈ (𝑋 ∖ {𝑍})))
2927eleq2d 2673 . . . . . . 7 ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → (𝐵 ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ↔ 𝐵 ∈ (𝑋 ∖ {𝑍})))
3028, 29anbi12d 743 . . . . . 6 ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → ((𝐴 ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∧ 𝐵 ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))) ↔ (𝐴 ∈ (𝑋 ∖ {𝑍}) ∧ 𝐵 ∈ (𝑋 ∖ {𝑍}))))
3127eleq2d 2673 . . . . . 6 ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → ((𝐴(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝐵) ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ↔ (𝐴(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝐵) ∈ (𝑋 ∖ {𝑍})))
3211, 30, 313imtr3d 281 . . . . 5 ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → ((𝐴 ∈ (𝑋 ∖ {𝑍}) ∧ 𝐵 ∈ (𝑋 ∖ {𝑍})) → (𝐴(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝐵) ∈ (𝑋 ∖ {𝑍})))
3332imp 444 . . . 4 (((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) ∧ (𝐴 ∈ (𝑋 ∖ {𝑍}) ∧ 𝐵 ∈ (𝑋 ∖ {𝑍}))) → (𝐴(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝐵) ∈ (𝑋 ∖ {𝑍}))
347, 33eqeltrrd 2689 . . 3 (((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) ∧ (𝐴 ∈ (𝑋 ∖ {𝑍}) ∧ 𝐵 ∈ (𝑋 ∖ {𝑍}))) → (𝐴𝐻𝐵) ∈ (𝑋 ∖ {𝑍}))
35343impb 1252 . 2 (((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) ∧ 𝐴 ∈ (𝑋 ∖ {𝑍}) ∧ 𝐵 ∈ (𝑋 ∖ {𝑍})) → (𝐴𝐻𝐵) ∈ (𝑋 ∖ {𝑍}))
365, 35syl3an1b 1354 1 ((𝑅 ∈ DivRingOps ∧ 𝐴 ∈ (𝑋 ∖ {𝑍}) ∧ 𝐵 ∈ (𝑋 ∖ {𝑍})) → (𝐴𝐻𝐵) ∈ (𝑋 ∖ {𝑍}))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   ∖ cdif 3537   ⊆ wss 3540  {csn 4125   × cxp 5036  dom cdm 5038  ran crn 5039   ↾ cres 5040  ⟶wf 5800  ‘cfv 5804  (class class class)co 6549  1st c1st 7057  2nd c2nd 7058  GrpOpcgr 26727  GIdcgi 26728  RingOpscrngo 32863  DivRingOpscdrng 32917 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-fo 5810  df-fv 5812  df-ov 6552  df-1st 7059  df-2nd 7060  df-grpo 26731  df-rngo 32864  df-drngo 32918 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator