Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  exidresid Structured version   Visualization version   GIF version

Theorem exidresid 32848
Description: The restriction of a binary operation with identity to a subset containing the identity has the same identity element. (Contributed by Jeff Madsen, 8-Jun-2010.) (Revised by Mario Carneiro, 23-Dec-2013.)
Hypotheses
Ref Expression
exidres.1 𝑋 = ran 𝐺
exidres.2 𝑈 = (GId‘𝐺)
exidres.3 𝐻 = (𝐺 ↾ (𝑌 × 𝑌))
Assertion
Ref Expression
exidresid (((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) ∧ 𝐻 ∈ Magma) → (GId‘𝐻) = 𝑈)

Proof of Theorem exidresid
Dummy variables 𝑥 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 exidres.3 . . . . . 6 𝐻 = (𝐺 ↾ (𝑌 × 𝑌))
2 resexg 5362 . . . . . 6 (𝐺 ∈ (Magma ∩ ExId ) → (𝐺 ↾ (𝑌 × 𝑌)) ∈ V)
31, 2syl5eqel 2692 . . . . 5 (𝐺 ∈ (Magma ∩ ExId ) → 𝐻 ∈ V)
4 eqid 2610 . . . . . 6 ran 𝐻 = ran 𝐻
54gidval 26750 . . . . 5 (𝐻 ∈ V → (GId‘𝐻) = (𝑢 ∈ ran 𝐻𝑥 ∈ ran 𝐻((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥)))
63, 5syl 17 . . . 4 (𝐺 ∈ (Magma ∩ ExId ) → (GId‘𝐻) = (𝑢 ∈ ran 𝐻𝑥 ∈ ran 𝐻((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥)))
763ad2ant1 1075 . . 3 ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) → (GId‘𝐻) = (𝑢 ∈ ran 𝐻𝑥 ∈ ran 𝐻((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥)))
87adantr 480 . 2 (((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) ∧ 𝐻 ∈ Magma) → (GId‘𝐻) = (𝑢 ∈ ran 𝐻𝑥 ∈ ran 𝐻((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥)))
9 exidres.1 . . . . . . 7 𝑋 = ran 𝐺
10 exidres.2 . . . . . . 7 𝑈 = (GId‘𝐺)
119, 10, 1exidreslem 32846 . . . . . 6 ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) → (𝑈 ∈ dom dom 𝐻 ∧ ∀𝑥 ∈ dom dom 𝐻((𝑈𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑈) = 𝑥)))
1211simprd 478 . . . . 5 ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) → ∀𝑥 ∈ dom dom 𝐻((𝑈𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑈) = 𝑥))
1312adantr 480 . . . 4 (((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) ∧ 𝐻 ∈ Magma) → ∀𝑥 ∈ dom dom 𝐻((𝑈𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑈) = 𝑥))
149, 10, 1exidres 32847 . . . . . 6 ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) → 𝐻 ∈ ExId )
15 elin 3758 . . . . . . . 8 (𝐻 ∈ (Magma ∩ ExId ) ↔ (𝐻 ∈ Magma ∧ 𝐻 ∈ ExId ))
16 rngopidOLD 32822 . . . . . . . 8 (𝐻 ∈ (Magma ∩ ExId ) → ran 𝐻 = dom dom 𝐻)
1715, 16sylbir 224 . . . . . . 7 ((𝐻 ∈ Magma ∧ 𝐻 ∈ ExId ) → ran 𝐻 = dom dom 𝐻)
1817ancoms 468 . . . . . 6 ((𝐻 ∈ ExId ∧ 𝐻 ∈ Magma) → ran 𝐻 = dom dom 𝐻)
1914, 18sylan 487 . . . . 5 (((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) ∧ 𝐻 ∈ Magma) → ran 𝐻 = dom dom 𝐻)
2019raleqdv 3121 . . . 4 (((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) ∧ 𝐻 ∈ Magma) → (∀𝑥 ∈ ran 𝐻((𝑈𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑈) = 𝑥) ↔ ∀𝑥 ∈ dom dom 𝐻((𝑈𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑈) = 𝑥)))
2113, 20mpbird 246 . . 3 (((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) ∧ 𝐻 ∈ Magma) → ∀𝑥 ∈ ran 𝐻((𝑈𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑈) = 𝑥))
2211simpld 474 . . . . . 6 ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) → 𝑈 ∈ dom dom 𝐻)
2322adantr 480 . . . . 5 (((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) ∧ 𝐻 ∈ Magma) → 𝑈 ∈ dom dom 𝐻)
2423, 19eleqtrrd 2691 . . . 4 (((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) ∧ 𝐻 ∈ Magma) → 𝑈 ∈ ran 𝐻)
254exidu1 32825 . . . . . . 7 (𝐻 ∈ (Magma ∩ ExId ) → ∃!𝑢 ∈ ran 𝐻𝑥 ∈ ran 𝐻((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥))
2615, 25sylbir 224 . . . . . 6 ((𝐻 ∈ Magma ∧ 𝐻 ∈ ExId ) → ∃!𝑢 ∈ ran 𝐻𝑥 ∈ ran 𝐻((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥))
2726ancoms 468 . . . . 5 ((𝐻 ∈ ExId ∧ 𝐻 ∈ Magma) → ∃!𝑢 ∈ ran 𝐻𝑥 ∈ ran 𝐻((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥))
2814, 27sylan 487 . . . 4 (((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) ∧ 𝐻 ∈ Magma) → ∃!𝑢 ∈ ran 𝐻𝑥 ∈ ran 𝐻((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥))
29 oveq1 6556 . . . . . . . 8 (𝑢 = 𝑈 → (𝑢𝐻𝑥) = (𝑈𝐻𝑥))
3029eqeq1d 2612 . . . . . . 7 (𝑢 = 𝑈 → ((𝑢𝐻𝑥) = 𝑥 ↔ (𝑈𝐻𝑥) = 𝑥))
31 oveq2 6557 . . . . . . . 8 (𝑢 = 𝑈 → (𝑥𝐻𝑢) = (𝑥𝐻𝑈))
3231eqeq1d 2612 . . . . . . 7 (𝑢 = 𝑈 → ((𝑥𝐻𝑢) = 𝑥 ↔ (𝑥𝐻𝑈) = 𝑥))
3330, 32anbi12d 743 . . . . . 6 (𝑢 = 𝑈 → (((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥) ↔ ((𝑈𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑈) = 𝑥)))
3433ralbidv 2969 . . . . 5 (𝑢 = 𝑈 → (∀𝑥 ∈ ran 𝐻((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥) ↔ ∀𝑥 ∈ ran 𝐻((𝑈𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑈) = 𝑥)))
3534riota2 6533 . . . 4 ((𝑈 ∈ ran 𝐻 ∧ ∃!𝑢 ∈ ran 𝐻𝑥 ∈ ran 𝐻((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥)) → (∀𝑥 ∈ ran 𝐻((𝑈𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑈) = 𝑥) ↔ (𝑢 ∈ ran 𝐻𝑥 ∈ ran 𝐻((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥)) = 𝑈))
3624, 28, 35syl2anc 691 . . 3 (((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) ∧ 𝐻 ∈ Magma) → (∀𝑥 ∈ ran 𝐻((𝑈𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑈) = 𝑥) ↔ (𝑢 ∈ ran 𝐻𝑥 ∈ ran 𝐻((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥)) = 𝑈))
3721, 36mpbid 221 . 2 (((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) ∧ 𝐻 ∈ Magma) → (𝑢 ∈ ran 𝐻𝑥 ∈ ran 𝐻((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥)) = 𝑈)
388, 37eqtrd 2644 1 (((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) ∧ 𝐻 ∈ Magma) → (GId‘𝐻) = 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  ∃!wreu 2898  Vcvv 3173  cin 3539  wss 3540   × cxp 5036  dom cdm 5038  ran crn 5039  cres 5040  cfv 5804  crio 6510  (class class class)co 6549  GIdcgi 26728   ExId cexid 32813  Magmacmagm 32817
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-fo 5810  df-fv 5812  df-riota 6511  df-ov 6552  df-gid 26732  df-exid 32814  df-mgmOLD 32818
This theorem is referenced by:  isdrngo2  32927
  Copyright terms: Public domain W3C validator